Tropical varieties of neural networks

Yue Ren (Swansea University)

joint work with:

- Guido Montúfar (UC LA & MPI Leipzig)
- Leon Zhang (UC Berkeley)

23 September 2020

Definition

A rectified linear unit (ReLU) network is a function of the form

$$\Phi: \quad \mathbb{R}^{n_0} \xrightarrow{\varphi_1} \mathbb{R}^{n_1} \xrightarrow{\varphi_2} \cdots \xrightarrow{\varphi_{L-1}} \mathbb{R}^{n_{L-1}} \xrightarrow{\varphi_L} \mathbb{R}^{n_L}$$

where $\varphi_i(x) = \max(W_i \cdot x + b_i, 0)$ for some $W_i \in \mathbb{R}^{n_i \times n_{i-1}}$ and $b_i \in \mathbb{R}^{n_i}$, and $\max(\cdot)$ denotes componentwise maximum.

The expressivity of neural networks **Definition**

A rectified linear unit (ReLU) network is a function of the form

$$\Phi: \quad \mathbb{R}^{n_0} \xrightarrow{\varphi_1} \mathbb{R}^{n_1} \xrightarrow{\varphi_2} \cdots \xrightarrow{\varphi_{L-1}} \mathbb{R}^{n_{L-1}} \xrightarrow{\varphi_L} \mathbb{R}^{n_L}$$

where $\varphi_i(x) = \max(W_i \cdot x + b_i, 0)$ for some $W_i \in \mathbb{R}^{n_i \times n_{i-1}}$ and $b_i \in \mathbb{R}^{n_i}$, and $\max(\cdot)$ denotes componentwise maximum.

A maxout network of rank r is a function $\Phi \colon \mathbb{R}^{n_0} \to \mathbb{R}^{n_L}$ of the same form, except $\varphi_i(x) = \max(W_{i,1} \cdot x + b_{i,1}, \dots, W_{i,r} \cdot x + b_{i,r})$.

Definition

A rectified linear unit (ReLU) network is a function of the form

$$\Phi: \quad \mathbb{R}^{n_0} \xrightarrow{\varphi_1} \mathbb{R}^{n_1} \xrightarrow{\varphi_2} \cdots \xrightarrow{\varphi_{L-1}} \mathbb{R}^{n_{L-1}} \xrightarrow{\varphi_L} \mathbb{R}^{n_L}$$

where $\varphi_i(x) = \max(W_i \cdot x + b_i, 0)$ for some $W_i \in \mathbb{R}^{n_i \times n_{i-1}}$ and $b_i \in \mathbb{R}^{n_i}$, and $\max(\cdot)$ denotes componentwise maximum.

A maxout network of rank r is a function $\Phi : \mathbb{R}^{n_0} \to \mathbb{R}^{n_L}$ of the same form, except $\varphi_i(x) = \max(W_{i,1} \cdot x + b_{i,1}, \dots, W_{i,r} \cdot x + b_{i,r})$.

Not covered in this talk:

• activations besides $max(\cdot, 0)$:

• convolutional / recurrent neural networks.

Definition

A linear region of $\Phi \colon \mathbb{R}^{n_0} \to \mathbb{R}^{n_L}$ is a maximal connected subset of \mathbb{R}^n on which Φ is linear.

Definition

A linear region of $\Phi \colon \mathbb{R}^{n_0} \to \mathbb{R}^{n_L}$ is a maximal connected subset of \mathbb{R}^n on which Φ is linear.

The maximal number of linear regions of a class of neural network is a measure of its capacity. The more it has, the better it approximates.

Definition

A linear region of $\Phi \colon \mathbb{R}^{n_0} \to \mathbb{R}^{n_L}$ is a maximal connected subset of \mathbb{R}^n on which Φ is linear.

The maximal number of linear regions of a class of neural network is a measure of its capacity. The more it has, the better it approximates.

Important questions

- What is the maximal number of linear regions for a fixed architecture (= activation, number of levels, nodes per level)?
- Which choices of parameters realize the maximal number?
- What is the expected number of linear regions?

Definition

A linear region of $\Phi \colon \mathbb{R}^{n_0} \to \mathbb{R}^{n_L}$ is a maximal connected subset of \mathbb{R}^n on which Φ is linear.

The maximal number of linear regions of a class of neural network is a measure of its capacity. The more it has, the better it approximates.

Important questions

- What is the maximal number of linear regions for a fixed architecture (= activation, number of levels, nodes per level)?
- Which choices of parameters realize the maximal number?
- What is the expected number of linear regions?

Motivation

- Initialization of networks.
- Iraining of networks.

State of the art on ReLU networks

Theorem (Zaslavsky 1975)

An generic arrangement of n_1 hyperplanes in \mathbb{R}^{n_0} has $\sum_{i=0}^{n_0} {n_1 \choose i}$ regions.

Corollary

A shallow ReLU network $\Phi : \mathbb{R}^{n_0} \to \mathbb{R}^{n_1}, x \mapsto (\max(w_i \cdot x + b_i, 0)_{i=1,...,n_1})$ has at most $\sum_{j=0}^{n_0} {n_1 \choose j}$ linear regions. The bound is sharp and attained by generic choices of parameters.

State of the art on ReLU networks

Theorem (Zaslavsky 1975)

An generic arrangement of n_1 hyperplanes in \mathbb{R}^{n_0} has $\sum_{i=0}^{n_0} {n_1 \choose i}$ regions.

Corollary

A shallow ReLU network $\Phi : \mathbb{R}^{n_0} \to \mathbb{R}^{n_1}, x \mapsto (\max(w_i \cdot x + b_i, 0)_{i=1,...,n_1})$ has at most $\sum_{j=0}^{n_0} {n_1 \choose j}$ linear regions. The bound is sharp and attained by generic choices of parameters.

Theorem (Montúfar-Pascanu-Cho-Bengio 2014)

There are deep ReLU networks $\Phi \colon \mathbb{R}^{n_0} \to \cdots \to \mathbb{R}^{n_L}$ with

$$\left(\prod_{i=1}^{L-1} \left\lfloor \frac{n_i}{n_0} \right\rfloor^{n_0}\right) \cdot \sum_{j=0}^{n_0} \binom{n_L}{j} \in \Omega\left((n/n_0)^{(L-1)n_0} n^{n_0}\right)$$

in case $n_i = n$ for $i > 0$

linear regions.

State of the art on ReLU networks

Corollary

A shallow ReLU network $\Phi : \mathbb{R}^{n_0} \to \mathbb{R}^{n_1}, x \mapsto (\max(w_i \cdot x + b_i, 0)_{i=1,...,n_1})$ has at most $\sum_{j=0}^{n_0} {n_1 \choose j}$ linear regions. The bound is sharp and attained by generic choices of parameters.

Theorem (Montúfar-Pascanu-Cho-Bengio 2014)

There are deep ReLU networks $\Phi \colon \mathbb{R}^{n_0} \to \cdots \to \mathbb{R}^{n_L}$ with

$$\left(\prod_{i=1}^{L-1} \left\lfloor \frac{n_i}{n_0} \right\rfloor^{n_0}\right) \cdot \sum_{j=0}^{n_0} \binom{n_L}{j} \in \Omega\left((n/n_0)^{(L-1)n_0} n^{n_0}\right)$$

in case $n_i = n$ for $i > 0$

linear regions.

Observation (Hanin-Rolnick 2019)

Deep ReLU networks have surprisingly few linear regions ($\in \Omega(n_0^{n_0+\dots+n_L})$).

Tropical polynomials and raised Newton polytopes **Recall**

tropical numbers: $\overline{\mathbb{R}} := \mathbb{R} \cup \{-\infty\}, a \oplus b := \max(a, b), a \odot b := a + b$

Tropical polynomials and raised Newton polytopes **Recall**

tropical numbers: $\overline{\mathbb{R}} := \mathbb{R} \cup \{-\infty\}, a \oplus b := \max(a, b), a \odot b := a + b$

Tropical polynomials and raised Newton polytopes

Tropical polynomials and raised Newton polytopes

Tropical polynomials and raised Newton polytopes

Upper bound theorem for Minkowski sums

Question

Let $P_1, \ldots, P_m \subseteq \mathbb{R}^n$ be convex polytopes with r vertices each. How many vertices are there in $P_1 + \cdots + P_k$?

Upper bound theorem for Minkowski sums

Question

Let $P_1, \ldots, P_m \subseteq \mathbb{R}^n$ be convex polytopes with r vertices each. How many vertices are there in $P_1 + \cdots + P_k$?

Answer 1

If m < n, the number vertices of $P_1 + \cdots + P_m$ is at most r^m . The bound is sharp.

Upper bound theorem for Minkowski sums

Question

Let $P_1, \ldots, P_m \subseteq \mathbb{R}^n$ be convex polytopes with r vertices each. How many vertices are there in $P_1 + \cdots + P_k$?

Answer 1

If m < n, the number vertices of $P_1 + \cdots + P_m$ is at most r^m . The bound is sharp.

Answer 2 (Fukuda-Weibel, Karavelas-Konaxis-Tzanaki, Adiprasito-Sanyal; 2007 onward)

If $m \ge n$, the the number vertices of $P_1 + \cdots + P_m$ is at most

$$\binom{m-1}{n} + \sum_{j=0}^{n} \binom{m}{j} (r-1)^{j}$$

The bound is sharp and attained by Minkowski-neighbourly polytopes.

Upper bound theorem for shallow maxout networks

Applying the upper bound theorem to raised Newton polytopes yields:

Corollary

Let $\Phi \colon \mathbb{R}^n \to \mathbb{R}^m$ be a shallow maxout network of rank r. Then the number of linear regions of Φ is sharply bounded above by

$$\begin{cases} r^m & \text{if } m < n, \\ \approx \binom{m-1}{n} + \sum_{j=0}^n \binom{m}{j} (r-1)^j & \text{if } m \ge n. \end{cases}$$

Corollary

Let $\Phi \colon \mathbb{R}^n \to \mathbb{R}^m$ be a shallow maxout network of rank r with weights and biases sampled i.i.d. from $\mathcal{N}_{0,1}$. Then the expected number of linear regions is

$$\begin{cases} \in O(\log(r)^{n^2}m^n) & \text{if } m < n, \\ \in O(\log(r)^{m \cdot n}) & \text{if } m \ge n. \end{cases}$$

First experimental results

We train on the CIFAR-10 dataset, which consists of 32x32px color images of airplanes, cars, birds, cats, deer, dogs, frogs, horses, ships, and trucks.

First experimental results

We train on the CIFAR-10 dataset, which consists of $32\times32px$ color images of airplanes, cars, birds, cats, deer, dogs, frogs, horses, ships, and trucks. In the following let Φ denote a maxout network of rank 5 of the form

$$\Phi \colon \mathbb{R}^{3 \times 32 \times 32} \longrightarrow \underbrace{\mathbb{R}^n \longrightarrow \cdots \longrightarrow \mathbb{R}^n}_{L \text{ hidden layers}} \longrightarrow \mathbb{R}^{10}$$

We initialize its parameters in two ways:

- maximizing the number of linear regions per layer (Fukuda-Weibel),
- **2** sampled i.i.d. from $\mathcal{N}_{0,1}$.

First experimental results

We train on the CIFAR-10 dataset, which consists of $32\times32px$ color images of airplanes, cars, birds, cats, deer, dogs, frogs, horses, ships, and trucks. In the following let Φ denote a maxout network of rank 5 of the form

$$\Phi \colon \mathbb{R}^{3 \times 32 \times 32} \longrightarrow \underbrace{\mathbb{R}^n \longrightarrow \cdots \longrightarrow \mathbb{R}^n}_{L \text{ hidden layers}} \longrightarrow \mathbb{R}^{10}$$

We initialize its parameters in two ways:

maximizing the number of linear regions per layer (Fukuda-Weibel),
sampled i.i.d. from N_{0,1}.

Difference in accuracy after training for 5 epochs:

	L=2	L=3	L=4	L=5	L=6
n=200	-0.01%	0.30%	-1.33%	-3.98%	-1.04%
n=400	0.04%	0.70%	0.70%	-1.44%	-0.15%
n=800	0.40%	1.00%	1.69%	2.23%	3.50%
n=1600	0.73%	1.09%	2.14%	2.07%	2.75%
(average of 10000 runs)					

First experimental results and ongoing work

Ongoing

Improve method for initializing maxout network

$$\Phi: \underbrace{\mathbb{R}^{n_0} \xrightarrow{\varphi_1} \mathbb{R}^{n_1} \xrightarrow{\varphi_2} \cdots \xrightarrow{\varphi_i} \mathbb{R}^{n_i}}_{=:\Phi_i} \xrightarrow{\varphi_{i+1}} \cdots \xrightarrow{\varphi_{L-1}} \mathbb{R}^{n_{L-1}} \xrightarrow{\varphi_L} \mathbb{R}^{n_L},$$

so that

• number of linear regions as large as possible

First experimental results and ongoing work

Ongoing

Improve method for initializing maxout network

$$\Phi: \underbrace{\mathbb{R}^{n_0} \xrightarrow{\varphi_1} \mathbb{R}^{n_1} \xrightarrow{\varphi_2} \cdots \xrightarrow{\varphi_i} \mathbb{R}^{n_i}}_{=:\Phi_i} \xrightarrow{\varphi_{i+1}} \cdots \xrightarrow{\varphi_{L-1}} \mathbb{R}^{n_{L-1}} \xrightarrow{\varphi_L} \mathbb{R}^{n_L},$$

so that

- number of linear regions as large as possible
- (Hanin-Rolnick 2018) $\mathbb{E}(\Phi_i(\mathcal{N}_{0,1})) = 0$ and $\sigma(\Phi_i(\mathcal{N}_{0,1})) =: \sigma_i$ not growing exponentially

First experimental results and ongoing work

Ongoing

Improve method for initializing maxout network

$$\Phi: \underbrace{\mathbb{R}^{n_0} \xrightarrow{\varphi_1} \mathbb{R}^{n_1} \xrightarrow{\varphi_2} \cdots \xrightarrow{\varphi_i} \mathbb{R}^{n_i}}_{=:\Phi_i} \xrightarrow{\varphi_{i+1}} \cdots \xrightarrow{\varphi_{L-1}} \mathbb{R}^{n_{L-1}} \xrightarrow{\varphi_L} \mathbb{R}^{n_L},$$

so that

- number of linear regions as large as possible
- (Hanin-Rolnick 2018) $\mathbb{E}(\Phi_i(\mathcal{N}_{0,1})) = 0$ and $\sigma(\Phi_i(\mathcal{N}_{0,1})) =: \sigma_i$ not growing exponentially
- (Steinwart 2019) Trop(φ_{i+1}) well spaced w.r.t. \mathcal{N}_{0,σ_i}

Bonus: weight agnostic networks and tropical linear spaces

Observation (Gaier-Ha 2019)

Certain networks architectures perform well on certain tasks even without training the weights (see weightagnostic.github.io/).

Interactive Demo

A weight agnostic neural network performing *CartpoleSwingup* task. Drag the slider to control the weight parameter and observe the performance at various shared weight parameters. You can also fine-tune the individual weights of all connections in this demo.

Yue Ren (Swansea University)

Bonus: weight agnostic networks and tropical linear spaces **Observation**

Maxout networks whose weights are unit vectors $(w \cdot x = x_i)$ correspond to tropical linear spaces of dimension n_0 in $\mathbb{R}^{n_0+\dots+n_L}$.

Bonus: weight agnostic networks and tropical linear spaces

Observation (Gaier-Ha 2019)

Certain networks architectures perform well on certain tasks even without training the weights (see weightagnostic.github.io/).

Observation

Maxout networks whose weights are unit vectors $(w \cdot x = x_i)$ correspond to tropical linear spaces of dimension n_0 in $\mathbb{R}^{n_0+\dots+n_L}$.

Speyer's f-Vector Theorem (2008-2009)

Tropical linear spaces have at most $\Omega(n_0^{n_0})$ maximal cells.

Corollary

Maxout networks whose weights are unit vectors only has at most $\Omega(n_0^{n_0})$ linear regions (compared to $\Omega(n_0^{n_1+\ldots+n_L})$ for unrestricted weights).

Summary and outlook

What has been done:

- First sharp bounds on the max number of linear regions for shallow maxout networks based on recent results in convex and tropical geometry.
- New initialization strategy for deep maxout networks which yields better performing networks after training.

Experiments were made with the help of:

Summary and outlook

What has been done:

- First sharp bounds on the max number of linear regions for shallow maxout networks based on recent results in convex and tropical geometry.
- New initialization strategy for deep maxout networks which yields better performing networks after training.

Experiments were made with the help of:

polymake Ö PyTorch

What will be done:

- Comprehensive study of deep networks using tropical geometry
 - Combinatorics of tropical fewnomial varieties
 - Upper bound theorem for Minkowski sums of degenerate polytopes
- Explore implications for the training of neural networks.

Image credits

- Slide 2 Activation plots by Laughsinthestocks taken from Wikipedia (link) and licensed under CC BY-SA 4.0.
- Slide 7 CIFAR-10 images taken from the tensorflow catalog (link) and licensed under CC BY 4.0.