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The expressivity of neural networks

Definition

A rectified linear unit (ReLU) network is a function of the form

Φ: Rn0
ϕ1−→ Rn1

ϕ2−→ · · ·
ϕL−1−→ RnL−1

ϕL−→ RnL ,

where ϕi (x) = max(Wi · x + bi , 0) for some Wi ∈ Rni×ni−1 and bi ∈ Rni ,
and max(·) denotes componentwise maximum.

A maxout network of rank r is a function Φ: Rn0 → RnL of the same form,
except ϕi (x) = max(Wi ,1 · x + bi ,1, . . . ,Wi ,r · x + bi ,r ).

Not covered in this talk:

activations besides max(·, 0):

gaussian tanh step

convolutional / recurrent neural networks.
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Definition

A linear region of Φ: Rn0 → RnL is a maximal connected subset of Rn

on which Φ is linear.
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The expressivity of neural networks

Definition

A linear region of Φ: Rn0 → RnL is a maximal connected subset of Rn

on which Φ is linear.

The maximal number of linear regions of a class of neural network is a
measure of its capacity. The more it has, the better it approximates.

Φ: R2−→R

x 7−→max(w · x + b, 0)

Φ: R2−→R3 −→ R

x 7−→
max(w1 · x + b1, 0)

max(w2 · x + b2, 0)
max(w3 · x + b3, 0)



0

wx + b

0

(+, +, 0) (0, +, 0) (0, +, +)

(0, 0, +)

(+, 0, +)

(+, 0, 0)
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The expressivity of neural networks

Definition

A linear region of Φ: Rn0 → RnL is a maximal connected subset of Rn

on which Φ is linear.

The maximal number of linear regions of a class of neural network is a
measure of its capacity. The more it has, the better it approximates.

Important questions
1 What is the maximal number of linear regions for a fixed architecture

(= activation, number of levels, nodes per level)?

2 Which choices of parameters realize the maximal number?

3 What is the expected number of linear regions?
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The expressivity of neural networks

Definition

A linear region of Φ: Rn0 → RnL is a maximal connected subset of Rn

on which Φ is linear.

The maximal number of linear regions of a class of neural network is a
measure of its capacity. The more it has, the better it approximates.

Important questions
1 What is the maximal number of linear regions for a fixed architecture

(= activation, number of levels, nodes per level)?

2 Which choices of parameters realize the maximal number?

3 What is the expected number of linear regions?

Motivation
1 Initialization of networks.

2 Training of networks.
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State of the art on ReLU networks

Theorem (Zaslavsky 1975)

An generic arrangement of n1 hyperplanes in Rn0 has
∑n0

j=0

(n1
j

)
regions.

Corollary

A shallow ReLU network Φ: Rn0 → Rn1 , x 7→ (max(wi · x + bi , 0)i=1,...,n1

has at most
∑n0

j=0

(n1
j

)
linear regions. The bound is sharp and attained by

generic choices of parameters.
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(n1
j

)
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generic choices of parameters.

Theorem (Montúfar-Pascanu-Cho-Bengio 2014)

There are deep ReLU networks Φ: Rn0 → · · · → RnL with(
L−1∏
i=1

⌊
ni
n0

⌋n0
)
·

n0∑
j=0

(
nL
j

)
∈ Ω

(
(n/n0)(L−1)n0nn0

)
linear regions.

in case ni = n for i > 0
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∈ Ω
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)
linear regions.

in case ni = n for i > 0

Observation (Hanin-Rolnick 2019)

Deep ReLU networks have surprisingly few linear regions (∈ Ω(nn0+···+nL
0 )).
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Tropical polynomials and raised Newton polytopes

Recall

tropical numbers: R := R ∪ {−∞}, a⊕ b := max(a, b), a� b := a + b

tropical r -nomials

0⊕ 0� x ⊕ 0� y ⊕ 1� xy

mixed subdivisions of r points

0 0

0

1

0 x

y xy

vertices of the mixed subdivision

raised Newton
polytope

= Conv( )

lower vertices of raised Newton polytope

=

linear regions

0

0� y

0� x

1� xy
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Tropical polynomials and raised Newton polytopes

single unit

Φ: Rn → R

multi units

Φ: Rn → Rk

# regions

ReLU maxout

0

wx+b

hyperplane

arrangement of

hyperplanes

varieties of tropical r -nomials

arrangement of
trop varieties

product of

trop polys
←→

Minkowski sum

of raised

Newton polys

←
→

Zavlasky ???
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Upper bound theorem for Minkowski sums

Question

Let P1, . . . ,Pm ⊆ Rn be convex polytopes with r vertices each.
How many vertices are there in P1 + · · ·+ Pk?

Answer 1

If m < n, the the number vertices of P1 + · · ·+ Pm is at most rm.
The bound is sharp.

Answer 2 (Fukuda-Weibel, Karavelas-Konaxis-Tzanaki,
Adiprasito-Sanyal; 2007 onward)

If m ≥ n, the the number vertices of P1 + · · ·+ Pm is at most(
m − 1

n

)
+

n∑
j=0

(
m

j

)
(r − 1)j

The bound is sharp and attained by Minkowski-neighbourly polytopes.
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Upper bound theorem for shallow maxout networks

Applying the upper bound theorem to raised Newton polytopes yields:

Corollary

Let Φ: Rn → Rm be a shallow maxout network of rank r . Then the
number of linear regions of Φ is sharply bounded above by{

rm if m < n,

≈
(m−1

n

)
+
∑n

j=0

(m
j

)
(r − 1)j if m ≥ n.

Corollary

Let Φ: Rn → Rm be a shallow maxout network of rank r with weights and
biases sampled i.i.d. from N0,1. Then the expected number of linear
regions is {

∈ O(log(r)n
2
mn) if m < n,

∈ O(log(r)m·n) if m ≥ n.
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First experimental results

We train on the CIFAR-10 dataset, which consists of 32x32px color images
of airplanes, cars, birds, cats, deer, dogs, frogs, horses, ships, and trucks.
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In the following let Φ denote a maxout network of rank 5 of the form

Φ: R3×32×32 −→ Rn −→ · · · −→ Rn︸ ︷︷ ︸
L hidden layers

−→ R10

We initialize its parameters in two ways:

1 maximizing the number of linear regions per layer (Fukuda-Weibel),

2 sampled i.i.d. from N0,1.

Yue Ren (Swansea University) Tropical varieties of neural networks 23 September 2020 7 / 10



First experimental results

We train on the CIFAR-10 dataset, which consists of 32x32px color images
of airplanes, cars, birds, cats, deer, dogs, frogs, horses, ships, and trucks.

In the following let Φ denote a maxout network of rank 5 of the form

Φ: R3×32×32 −→ Rn −→ · · · −→ Rn︸ ︷︷ ︸
L hidden layers

−→ R10

We initialize its parameters in two ways:

1 maximizing the number of linear regions per layer (Fukuda-Weibel),

2 sampled i.i.d. from N0,1.

Difference in accuracy after training for 5 epochs:

L=2 L=3 L=4 L=5 L=6
n=200 -0.01% 0.30% -1.33% -3.98% -1.04%
n=400 0.04% 0.70% 0.70% -1.44% -0.15%
n=800 0.40% 1.00% 1.69% 2.23% 3.50%
n=1600 0.73% 1.09% 2.14% 2.07% 2.75%

(average of 10000 runs)

Yue Ren (Swansea University) Tropical varieties of neural networks 23 September 2020 7 / 10



First experimental results and ongoing work

Ongoing

Improve method for initializing maxout network

Φ: Rn0
ϕ1−→ Rn1

ϕ2−→ · · · ϕi−→ Rni

=:Φi

ϕi+1−→ · · ·
ϕL−1−→ RnL−1

ϕL−→ RnL ,

so that

number of linear regions as large as possible

(Hanin-Rolnick 2018) E(Φi (N0,1)) = 0 and
σ(Φi (N0,1)) =: σi not growing exponentially

(Steinwart 2019) Trop(ϕi+1) well spaced w.r.t. N0,σi

7 3
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Bonus: weight agnostic networks and tropical linear spaces

Observation (Gaier-Ha 2019)

Certain networks architectures perform well on certain tasks even without
training the weights (see weightagnostic.github.io/).
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Bonus: weight agnostic networks and tropical linear spaces

Observation

Maxout networks whose weights are unit vectors (w · x = xi ) correspond
to tropical linear spaces of dimension n0 in Rn0+···+nL .

Φ : R R R
ϕ1 ϕ2

x x ⊕ 0

y −1� y ⊕ 0

(1, 0,
0)

(2, 1,
0)

> In

>H
id

d
en

>
O

ut

Modϕ2
Modϕ1

R

(1, 0)

> In

>H
id

d
en

Modϕ1
R

> In

R

Yue Ren (Swansea University) Tropical varieties of neural networks 23 September 2020 9 / 10



Bonus: weight agnostic networks and tropical linear spaces

Observation (Gaier-Ha 2019)

Certain networks architectures perform well on certain tasks even without
training the weights (see weightagnostic.github.io/).

Observation

Maxout networks whose weights are unit vectors (w · x = xi ) correspond
to tropical linear spaces of dimension n0 in Rn0+···+nL .

Speyer’s f-Vector Theorem (2008-2009)

Tropical linear spaces have at most Ω(nn0
0 ) maximal cells.

Corollary

Maxout networks whose weights are unit vectors only has at most Ω(nn0
0 )

linear regions (compared to Ω(nn1+...+nL
0 ) for unrestricted weights).
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Summary and outlook

What has been done:

First sharp bounds on the max number of linear regions for
shallow maxout networks based on recent results in convex and
tropical geometry.

New initialization strategy for deep maxout networks which
yields better performing networks after training.

Experiments were made with the help of:

What will be done:

Comprehensive study of deep networks using tropical geometry

Combinatorics of tropical fewnomial varieties
Upper bound theorem for Minkowski sums of degenerate polytopes

Explore implications for the training of neural networks.
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Image credits

Slide 2 Activation plots by Laughsinthestocks taken from Wikipedia
(link) and licensed under CC BY-SA 4.0.

Slide 7 CIFAR-10 images taken from the tensorflow catalog (link)
and licensed under CC BY 4.0.
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