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Equations for the K3-Lehmer map

A real (K3) surface of bidegree (2,2,2) in P! x P! x P!

Left: some orbits Right: a stable manifold *

!Cantat, Dynamics of automorphisms of compact complex surfaces, Frontiers in
Complex Dynamics, Princeton University Press, pp. 463-514.
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Equations for the K3-Lehmer map
An invariant

The Topological Entropy h(f)
@ h(f) > 0 measures the disorder created by the automorphism
e Gromov, Yomdim: h(f) = log A(f)
e dynamical degree \(f),the spectral radius of f*|H?(X,7Z)
= A(f) a Salem number (an algebraic integer)
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xO0 4 x9 - x 7T x0 x5 x4 x3 4 x+1.
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is the root A\1p = 1.176280818... of
xO0 4 x9 - x 7T x0 x5 x4 x3 4 x+1.

| A\

Conjecture

Lehmer's number is the smallest algebraic integer
with Mahler measure M(«a) > 1.

M(«) == [[iL; max{1, |aj|} where a1,...,a, € C are the roots of the
minimal polynomial of a.

Lehmer's conjecture is true for automorphisms of complex surfaces

(McMullen): h(f) =0 or log A1p < h(f)
— spectral gap

If equality holds, then X must be rational or a K3 surface.
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Explicit equations for Xi9 and the K3-Lehmer map fio defined over a
degree 2 extension of Q[(7].

A sketch of the computation

@ Xjo lies in a one dimensional family F of elliptic K3 surfaces with an
automorphism of order 7

vi=x*+ax+t'+1, (acQ)

@ reduce modulo 29(why 297 F, contains the (p — 1)-th roots of unity
and 28 =4-7)
@ recognize Xi0/Fag in F/Fag by requiring extra curves on it:
X10/Fag: y?> = x3+19x+19t" +15
x(t) = t*+ 73 4762 427t + 16
y(t) = t®+25¢t° +18t* 4 25¢3 4 15t> + 20t + 23
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What about the Lehmer map f19? At this point we know only .
Theoretical idea:

e F={t=0} C Xy a fiber
@ *F is the fiber of another elliptic fibration E

o linear system |f*F| gives new coordinates,
i.e. a WeiterstraB equation for £, & £

@ the composite map E; < E; = E; is (almost) the K3-Lehmer map fio

Practical problem: ill suited coordinates!— fig very complicated.
We need a different elliptic fibration!

Let F’ be the fiber of another fibration with F'.F =2. Then F’*/F’ and
FL/F are neighboring lattices in the sense of Kneser. — Kneser's
neighbor method gives elliptic fibrations
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