Equations for the K3-Lehmer map

Simon Brandhorst, joint work with Noam D. Elkies

September 21, 2020

Discrete holomorphic dynamics

Setting

- a compact complex surface X

Discrete holomorphic dynamics

Setting

- a compact complex surface X
- $f: X \rightarrow X$ a biholomorphic map

Discrete holomorphic dynamics

Setting

- a compact complex surface X
- $f: X \rightarrow X$ a biholomorphic map
- $p \in X$, "time evolution": $\left(p, f(p), f^{2}(p), f^{3}(p), \ldots\right)$

Discrete holomorphic dynamics

Setting

- a compact complex surface X
- $f: X \rightarrow X$ a biholomorphic map
- $p \in X$, "time evolution": $\left(p, f(p), f^{2}(p), f^{3}(p), \ldots\right)$
\rightarrow Discrete holomorphic dynamics on X.

Discrete holomorphic dynamics

Setting

- a compact complex surface X
- $f: X \rightarrow X$ a biholomorphic map
- $p \in X$, "time evolution": $\left(p, f(p), f^{2}(p), f^{3}(p), \ldots\right)$
\rightarrow Discrete holomorphic dynamics on X.

A real (K3) surface of bidegree $(2,2,2)$ in $\mathbb{P}^{1} \times \mathbb{P}^{1} \times \mathbb{P}^{1}$

Left: some orbits

Right: a stable manifold ${ }^{1}$
${ }^{1}$ Cantat, Dynamics of automorphisms of compact complex surfaces, Frontiers in Complex Dynamics, Princeton University Press, pp. 463-514.

An invariant

The Topological Entropy $h(f)$

An invariant

The Topological Entropy $h(f)$

- $h(f) \geq 0$ measures the disorder created by the automorphism

An invariant

The Topological Entropy $h(f)$

- $h(f) \geq 0$ measures the disorder created by the automorphism
- Gromov, Yomdim: $h(f)=\log \lambda(f)$

An invariant

The Topological Entropy $h(f)$

- $h(f) \geq 0$ measures the disorder created by the automorphism
- Gromov, Yomdim: $h(f)=\log \lambda(f)$
- dynamical degree $\lambda(f)$,

An invariant

The Topological Entropy $h(f)$

- $h(f) \geq 0$ measures the disorder created by the automorphism
- Gromov, Yomdim: $h(f)=\log \lambda(f)$
- dynamical degree $\lambda(f)$, the spectral radius of $f^{*} \mid H^{2}(X, \mathbb{Z})$

An invariant

The Topological Entropy $h(f)$

- $h(f) \geq 0$ measures the disorder created by the automorphism
- Gromov, Yomdim: $h(f)=\log \lambda(f)$
- dynamical degree $\lambda(f)$, the spectral radius of $f^{*} \mid H^{2}(X, \mathbb{Z})$
$\Rightarrow \lambda(f)$ a Salem number (an algebraic integer)

```
Lehmer's number
is the root \(\lambda_{10}=1.176280818 \ldots\) of \(x^{10}+x^{9}-x^{-7}-x^{6}-x^{5}-x^{4}-x^{3}+x+1\).
```


Lehmer's number

is the root $\lambda_{10}=1.176280818 \ldots$ of $x^{10}+x^{9}-x^{-7}-x^{6}-x^{5}-x^{4}-x^{3}+x+1$.

Conjecture

Lehmer's number is the smallest algebraic integer α

Lehmer's number

is the root $\lambda_{10}=1.176280818 \ldots$ of $x^{10}+x^{9}-x^{-7}-x^{6}-x^{5}-x^{4}-x^{3}+x+1$.

Conjecture

Lehmer's number is the smallest algebraic integer α with Mahler measure $M(\alpha)>1$.

Lehmer's number

is the root $\lambda_{10}=1.176280818 \ldots$ of $x^{10}+x^{9}-x^{-7}-x^{6}-x^{5}-x^{4}-x^{3}+x+1$.

Conjecture

Lehmer's number is the smallest algebraic integer α with Mahler measure $M(\alpha)>1$.
$M(\alpha):=\prod_{i=1}^{n} \max \left\{1,\left|\alpha_{i}\right|\right\}$ where $\alpha_{1}, \ldots, \alpha_{n} \in \mathbb{C}$ are the roots of the minimal polynomial of α.

Lehmer's number

is the root $\lambda_{10}=1.176280818 \ldots$ of $x^{10}+x^{9}-x^{-7}-x^{6}-x^{5}-x^{4}-x^{3}+x+1$.

Conjecture

Lehmer's number is the smallest algebraic integer α with Mahler measure $M(\alpha)>1$.
$M(\alpha):=\prod_{i=1}^{n} \max \left\{1,\left|\alpha_{i}\right|\right\}$ where $\alpha_{1}, \ldots, \alpha_{n} \in \mathbb{C}$ are the roots of the minimal polynomial of α.

Lehmer's conjecture is true for automorphisms of complex surfaces

Lehmer's number

is the root $\lambda_{10}=1.176280818 \ldots$ of $x^{10}+x^{9}-x^{-7}-x^{6}-x^{5}-x^{4}-x^{3}+x+1$.

Conjecture

Lehmer's number is the smallest algebraic integer α with Mahler measure $M(\alpha)>1$.
$M(\alpha):=\prod_{i=1}^{n} \max \left\{1,\left|\alpha_{i}\right|\right\}$ where $\alpha_{1}, \ldots, \alpha_{n} \in \mathbb{C}$ are the roots of the minimal polynomial of α.

Lehmer's conjecture is true for automorphisms of complex surfaces
(McMullen): $h(f)=0$ or

Lehmer's number

is the root $\lambda_{10}=1.176280818 \ldots$ of $x^{10}+x^{9}-x^{-7}-x^{6}-x^{5}-x^{4}-x^{3}+x+1$.

Conjecture

Lehmer's number is the smallest algebraic integer α with Mahler measure $M(\alpha)>1$.
$M(\alpha):=\prod_{i=1}^{n} \max \left\{1,\left|\alpha_{i}\right|\right\}$ where $\alpha_{1}, \ldots, \alpha_{n} \in \mathbb{C}$ are the roots of the minimal polynomial of α.

Lehmer's conjecture is true for automorphisms of complex surfaces
(McMullen): $h(f)=0$ or $\log \lambda_{10} \leq h(f)$

Lehmer's number

is the root $\lambda_{10}=1.176280818 \ldots$ of $x^{10}+x^{9}-x^{-7}-x^{6}-x^{5}-x^{4}-x^{3}+x+1$.

Conjecture

Lehmer's number is the smallest algebraic integer α with Mahler measure $M(\alpha)>1$.
$M(\alpha):=\prod_{i=1}^{n} \max \left\{1,\left|\alpha_{i}\right|\right\}$ where $\alpha_{1}, \ldots, \alpha_{n} \in \mathbb{C}$ are the roots of the minimal polynomial of α.

Lehmer's conjecture is true for automorphisms of complex surfaces
(McMullen): $h(f)=0$ or $\log \lambda_{10} \leq h(f)$
\rightarrow spectral gap

Lehmer's number

is the root $\lambda_{10}=1.176280818 \ldots$ of $x^{10}+x^{9}-x^{-7}-x^{6}-x^{5}-x^{4}-x^{3}+x+1$.

Conjecture

Lehmer's number is the smallest algebraic integer α with Mahler measure $M(\alpha)>1$.
$M(\alpha):=\prod_{i=1}^{n} \max \left\{1,\left|\alpha_{i}\right|\right\}$ where $\alpha_{1}, \ldots, \alpha_{n} \in \mathbb{C}$ are the roots of the minimal polynomial of α.

Lehmer's conjecture is true for automorphisms of complex surfaces
(McMullen): $h(f)=0$ or $\log \lambda_{10} \leq h(f)$
\rightarrow spectral gap
If equality holds, then X must be rational or a K 3 surface.

Theorem (McMullen)

There exists an automorphism f_{10} of a complex projective $K 3$ surface X_{10}

Theorem (McMullen)

There exists an automorphism f_{10} of a complex projective $K 3$ surface X_{10} attaining the minimum possible entropy $h\left(f_{10}\right)=\log \left(\lambda_{10}\right)$.

Theorem (McMullen)

There exists an automorphism f_{10} of a complex projective $K 3$ surface X_{10} attaining the minimum possible entropy $h\left(f_{10}\right)=\log \left(\lambda_{10}\right)$.

Proof.

Build a cohomological model for X and f consisting of

Theorem (McMullen)

There exists an automorphism f_{10} of a complex projective $K 3$ surface X_{10} attaining the minimum possible entropy $h\left(f_{10}\right)=\log \left(\lambda_{10}\right)$.

Proof.

Build a cohomological model for X and f consisting of
(1) $H^{2}(X, \mathbb{Z}) \hat{=} \quad$ a \mathbb{Z}-lattice $\left(\mathbb{Z}^{22},\langle\cdot, \cdot\rangle\right)$,

Theorem (McMullen)

There exists an automorphism f_{10} of a complex projective $K 3$ surface X_{10} attaining the minimum possible entropy $h\left(f_{10}\right)=\log \left(\lambda_{10}\right)$.

Proof.

Build a cohomological model for X and f consisting of
(1) $H^{2}(X, \mathbb{Z}) \hat{=} \quad$ a \mathbb{Z}-lattice $\left(\mathbb{Z}^{22},\langle\cdot, \cdot\rangle\right)$,
(2) $f^{*}: H^{2}(X, \mathbb{Z}) \rightarrow H^{2}(X, \mathbb{Z}) \hat{=}$ an isometry,

Theorem (McMullen)

There exists an automorphism f_{10} of a complex projective $K 3$ surface X_{10} attaining the minimum possible entropy $h\left(f_{10}\right)=\log \left(\lambda_{10}\right)$.

Proof.

Build a cohomological model for X and f consisting of
(1) $H^{2}(X, \mathbb{Z}) \hat{=} \quad$ a \mathbb{Z}-lattice $\left(\mathbb{Z}^{22},\langle\cdot, \cdot\rangle\right)$,
(2) $f^{*}: H^{2}(X, \mathbb{Z}) \rightarrow H^{2}(X, \mathbb{Z}) \hat{=}$ an isometry,
(3) a Hodge structure $\hat{=}$ a line in \mathbb{C}^{22},

Theorem (McMullen)

There exists an automorphism f_{10} of a complex projective $K 3$ surface X_{10} attaining the minimum possible entropy $h\left(f_{10}\right)=\log \left(\lambda_{10}\right)$.

Proof.

Build a cohomological model for X and f consisting of
(1) $H^{2}(X, \mathbb{Z}) \hat{=} \quad$ a \mathbb{Z}-lattice $\left(\mathbb{Z}^{22},\langle\cdot, \cdot\rangle\right)$,
(2) $f^{*}: H^{2}(X, \mathbb{Z}) \rightarrow H^{2}(X, \mathbb{Z}) \hat{=}$ an isometry,
(3) a Hodge structure $\hat{=}$ a line in \mathbb{C}^{22},
(9) the nef cone $\hat{=}$ locally polyhedral convex cone in \mathbb{R}^{20},

Theorem (McMullen)

There exists an automorphism f_{10} of a complex projective $K 3$ surface X_{10} attaining the minimum possible entropy $h\left(f_{10}\right)=\log \left(\lambda_{10}\right)$.

Proof.

Build a cohomological model for X and f consisting of
(1) $H^{2}(X, \mathbb{Z}) \hat{=} \quad$ a \mathbb{Z}-lattice $\left(\mathbb{Z}^{22},\langle\cdot, \cdot\rangle\right)$,
(2) $f^{*}: H^{2}(X, \mathbb{Z}) \rightarrow H^{2}(X, \mathbb{Z}) \hat{=}$ an isometry,
(3) a Hodge structure $\hat{=}$ a line in \mathbb{C}^{22},
(9) the nef cone $\hat{=}$ locally polyhedral convex cone in \mathbb{R}^{20},

Torelli type theorem \Longrightarrow

Theorem (McMullen)

There exists an automorphism f_{10} of a complex projective $K 3$ surface X_{10} attaining the minimum possible entropy $h\left(f_{10}\right)=\log \left(\lambda_{10}\right)$.

Proof.

Build a cohomological model for X and f consisting of
(1) $H^{2}(X, \mathbb{Z}) \hat{=} \quad$ a \mathbb{Z}-lattice $\left(\mathbb{Z}^{22},\langle\cdot, \cdot\rangle\right)$,
(2) $f^{*}: H^{2}(X, \mathbb{Z}) \rightarrow H^{2}(X, \mathbb{Z}) \hat{=}$ an isometry,
(3) a Hodge structure $\hat{=}$ a line in \mathbb{C}^{22},
(9) the nef cone $\hat{=}$ locally polyhedral convex cone in \mathbb{R}^{20},

Torelli type theorem \Longrightarrow existence of X and f.

Theorem (McMullen)

There exists an automorphism f_{10} of a complex projective $K 3$ surface X_{10} attaining the minimum possible entropy $h\left(f_{10}\right)=\log \left(\lambda_{10}\right)$.

Proof.

Build a cohomological model for X and f consisting of
(1) $H^{2}(X, \mathbb{Z}) \hat{=} \quad$ a \mathbb{Z}-lattice $\left(\mathbb{Z}^{22},\langle\cdot, \cdot\rangle\right)$,
(2) $f^{*}: H^{2}(X, \mathbb{Z}) \rightarrow H^{2}(X, \mathbb{Z}) \hat{=}$ an isometry,
(3) a Hodge structure $\hat{=}$ a line in \mathbb{C}^{22},
(9) the nef cone $\hat{=}$ locally polyhedral convex cone in \mathbb{R}^{20},

Torelli type theorem \Longrightarrow existence of X and f.
But:

Theorem (McMullen)

There exists an automorphism f_{10} of a complex projective $K 3$ surface X_{10} attaining the minimum possible entropy $h\left(f_{10}\right)=\log \left(\lambda_{10}\right)$.

Proof.

Build a cohomological model for X and f consisting of
(1) $H^{2}(X, \mathbb{Z}) \hat{=} \quad$ a \mathbb{Z}-lattice $\left(\mathbb{Z}^{22},\langle\cdot, \cdot\rangle\right)$,
(2) $f^{*}: H^{2}(X, \mathbb{Z}) \rightarrow H^{2}(X, \mathbb{Z}) \hat{=}$ an isometry,
(3) a Hodge structure $\hat{=}$ a line in \mathbb{C}^{22},
(9) the nef cone $\hat{=}$ locally polyhedral convex cone in \mathbb{R}^{20},

Torelli type theorem \Longrightarrow existence of X and f.
But: not constructive.

Theorem (McMullen)

There exists an automorphism f_{10} of a complex projective $K 3$ surface X_{10} attaining the minimum possible entropy $h\left(f_{10}\right)=\log \left(\lambda_{10}\right)$.

Proof.

Build a cohomological model for X and f consisting of
(1) $H^{2}(X, \mathbb{Z}) \hat{=} \quad$ a \mathbb{Z}-lattice $\left(\mathbb{Z}^{22},\langle\cdot, \cdot\rangle\right)$,
(2) $f^{*}: H^{2}(X, \mathbb{Z}) \rightarrow H^{2}(X, \mathbb{Z}) \hat{=}$ an isometry,
(3) a Hodge structure $\hat{=}$ a line in \mathbb{C}^{22},
(9) the nef cone $\hat{=}$ locally polyhedral convex cone in \mathbb{R}^{20},

Torelli type theorem \Longrightarrow existence of X and f.
But: not constructive. Equations?

Theorem (Brandhorst, Elkies)

Theorem (Brandhorst, Elkies)

Explicit equations for X_{10} and the K3-Lehmer map f_{10}

Theorem (Brandhorst, Elkies)

Explicit equations for X_{10} and the K3-Lehmer map f_{10} defined over a degree 2 extension of $\mathbb{Q}\left[\zeta_{7}\right]$.

Theorem (Brandhorst, Elkies)
 Explicit equations for X_{10} and the K3-Lehmer map f_{10} defined over a degree 2 extension of $\mathbb{Q}\left[\zeta_{7}\right]$.

A sketch of the computation

Theorem (Brandhorst, Elkies)

Explicit equations for X_{10} and the K3-Lehmer map f_{10} defined over a degree 2 extension of $\mathbb{Q}\left[\zeta_{7}\right]$.

A sketch of the computation
(1) X_{10} lies in a one dimensional family \mathcal{F} of elliptic K 3 surfaces with an automorphism of order 7

Theorem (Brandhorst, Elkies)

Explicit equations for X_{10} and the K3-Lehmer map f_{10} defined over a degree 2 extension of $\mathbb{Q}\left[\zeta_{7}\right]$.

A sketch of the computation
(1) X_{10} lies in a one dimensional family \mathcal{F} of elliptic K 3 surfaces with an automorphism of order 7

$$
y^{2}=x^{3}+a x+t^{7}+1, \quad(a \in \mathbb{C})
$$

Theorem (Brandhorst, Elkies)

Explicit equations for X_{10} and the K3-Lehmer map f_{10} defined over a degree 2 extension of $\mathbb{Q}\left[\zeta_{7}\right]$.

A sketch of the computation
(1) X_{10} lies in a one dimensional family \mathcal{F} of elliptic K 3 surfaces with an automorphism of order 7

$$
y^{2}=x^{3}+a x+t^{7}+1, \quad(a \in \mathbb{C})
$$

(2) reduce modulo 29

Theorem (Brandhorst, Elkies)

Explicit equations for X_{10} and the K3-Lehmer map f_{10} defined over a degree 2 extension of $\mathbb{Q}\left[\zeta_{7}\right]$.

A sketch of the computation
(1) X_{10} lies in a one dimensional family \mathcal{F} of elliptic K 3 surfaces with an automorphism of order 7

$$
y^{2}=x^{3}+a x+t^{7}+1, \quad(a \in \mathbb{C})
$$

(2) reduce modulo 29(why 29?

Theorem (Brandhorst, Elkies)

Explicit equations for X_{10} and the K3-Lehmer map f_{10} defined over a degree 2 extension of $\mathbb{Q}\left[\zeta_{7}\right]$.

A sketch of the computation
(1) X_{10} lies in a one dimensional family \mathcal{F} of elliptic K 3 surfaces with an automorphism of order 7

$$
y^{2}=x^{3}+a x+t^{7}+1, \quad(a \in \mathbb{C})
$$

(2) reduce modulo 29 (why 29 ? \mathbb{F}_{p} contains the $(p-1)$-th roots of unity and $28=4 \cdot 7$)

Theorem (Brandhorst, Elkies)

Explicit equations for X_{10} and the K3-Lehmer map f_{10} defined over a degree 2 extension of $\mathbb{Q}\left[\zeta_{7}\right]$.

A sketch of the computation
(1) X_{10} lies in a one dimensional family \mathcal{F} of elliptic K 3 surfaces with an automorphism of order 7

$$
y^{2}=x^{3}+a x+t^{7}+1, \quad(a \in \mathbb{C})
$$

(2) reduce modulo 29 (why 29 ? \mathbb{F}_{p} contains the $(p-1)$-th roots of unity and $28=4 \cdot 7$)
(3) recognize X_{10} / \mathbb{F}_{29} in $\mathcal{F} / \mathbb{F}_{29}$ by requiring extra curves on it:

Theorem (Brandhorst, Elkies)

Explicit equations for X_{10} and the K3-Lehmer map f_{10} defined over a degree 2 extension of $\mathbb{Q}\left[\zeta_{7}\right]$.

A sketch of the computation
(1) X_{10} lies in a one dimensional family \mathcal{F} of elliptic K 3 surfaces with an automorphism of order 7

$$
y^{2}=x^{3}+a x+t^{7}+1, \quad(a \in \mathbb{C})
$$

(2) reduce modulo 29 (why 29 ? \mathbb{F}_{p} contains the $(p-1)$-th roots of unity and $28=4 \cdot 7$)
(3) recognize X_{10} / \mathbb{F}_{29} in $\mathcal{F} / \mathbb{F}_{29}$ by requiring extra curves on it:

$$
X_{10} / \mathbb{F}_{29}: y^{2}=x^{3}+19 x+19 t^{7}+15
$$

Theorem (Brandhorst, Elkies)

Explicit equations for X_{10} and the K3-Lehmer map f_{10} defined over a degree 2 extension of $\mathbb{Q}\left[\zeta_{7}\right]$.

A sketch of the computation
(1) X_{10} lies in a one dimensional family \mathcal{F} of elliptic K 3 surfaces with an automorphism of order 7

$$
y^{2}=x^{3}+a x+t^{7}+1, \quad(a \in \mathbb{C})
$$

(2) reduce modulo 29 (why 29 ? \mathbb{F}_{p} contains the $(p-1)$-th roots of unity and $28=4 \cdot 7$)
(3) recognize X_{10} / \mathbb{F}_{29} in $\mathcal{F} / \mathbb{F}_{29}$ by requiring extra curves on it:

$$
\begin{aligned}
X_{10} / \mathbb{F}_{29}: y^{2} & =x^{3}+19 x+19 t^{7}+15 \\
x(t) & =t^{4}+7 t^{3}+7 t^{2}+27 t+16 \\
y(t) & =t^{6}+25 t^{5}+18 t^{4}+25 t^{3}+15 t^{2}+20 t+23
\end{aligned}
$$

Lift to characteristic 0

Lift to characteristic 0

(9) a multivariate Newton iteration lifts everything p-adically to high precision

Lift to characteristic 0

(9) a multivariate Newton iteration lifts everything p-adically to high precision

Lift to characteristic 0
(9) a multivariate Newton iteration lifts everything p-adically to high precision
(5) recognize the coefficients as algebraic integers (short vectors via LLL)

Lift to characteristic 0
(9) a multivariate Newton iteration lifts everything p-adically to high precision
(0) recognize the coefficients as algebraic integers (short vectors via LLL)

$$
0=w^{6}-2 w^{5}+2 w^{4}-3 w^{3}+2 w^{2}-2 w+10
$$

Lift to characteristic 0
(9) a multivariate Newton iteration lifts everything p-adically to high precision
(3) recognize the coefficients as algebraic integers (short vectors via LLL)

$$
0=w^{6}-2 w^{5}+2 w^{4}-3 w^{3}+2 w^{2}-2 w+10
$$

We get an equation E_{1} for X_{10}

$$
E_{1}: y^{2}=x^{3}+a x+b t^{7}+c \quad \text { where }
$$

Lift to characteristic 0
(9) a multivariate Newton iteration lifts everything p-adically to high precision
(5) recognize the coefficients as algebraic integers (short vectors via LLL)

$$
0=w^{6}-2 w^{5}+2 w^{4}-3 w^{3}+2 w^{2}-2 w+10
$$

We get an equation E_{1} for X_{10}

$$
E_{1}: y^{2}=x^{3}+a x+b t^{7}+c \quad \text { where }
$$

$$
\begin{aligned}
a= & \left(-86471 w^{5}-19851 w^{4}-116626 w^{3}+67043 w^{2}\right. \\
& -125502 w+106947) / 48 \\
b= & 7\left(-w^{5}+w^{4}+2 w^{3}-3 w^{2}+3 w-1\right) \\
c= & \left(141655682 w^{5}-65661512 w^{4}+230672148 w^{3}\right. \\
& \left.-136877559 w^{2}+149096157 w-96818792\right) / 864
\end{aligned}
$$

Lift to characteristic 0
(9) a multivariate Newton iteration lifts everything p-adically to high precision
(5) recognize the coefficients as algebraic integers (short vectors via LLL)

$$
0=w^{6}-2 w^{5}+2 w^{4}-3 w^{3}+2 w^{2}-2 w+10
$$

We get an equation E_{1} for X_{10}

$$
E_{1}: y^{2}=x^{3}+a x+b t^{7}+c \quad \text { where }
$$

$$
\begin{aligned}
a= & \left(-86471 w^{5}-19851 w^{4}-116626 w^{3}+67043 w^{2}\right. \\
& -125502 w+106947) / 48 \\
b= & 7\left(-w^{5}+w^{4}+2 w^{3}-3 w^{2}+3 w-1\right) \\
c= & \left(141655682 w^{5}-65661512 w^{4}+230672148 w^{3}\right. \\
& \left.-136877559 w^{2}+149096157 w-96818792\right) / 864
\end{aligned}
$$

What about the Lehmer map f_{10} ?

What about the Lehmer map f_{10} ? At this point we know only f_{10}^{*}.

What about the Lehmer map f_{10} ? At this point we know only f_{10}^{*}. Theoretical idea:

What about the Lehmer map f_{10} ? At this point we know only f_{10}^{*}. Theoretical idea:

- $F=\{t=0\} \subseteq X_{10}$ a fiber

What about the Lehmer map f_{10} ? At this point we know only f_{10}^{*}. Theoretical idea:

- $F=\{t=0\} \subseteq X_{10}$ a fiber
- $f^{*} F$ is the fiber of another elliptic fibration E_{2}

What about the Lehmer map f_{10} ? At this point we know only f_{10}^{*}. Theoretical idea:

- $F=\{t=0\} \subseteq X_{10}$ a fiber
- $f^{*} F$ is the fiber of another elliptic fibration E_{2}
- linear system $\left|f^{*} F\right|$ gives new coordinates, i.e. a Weiterstraß equation for $E_{2} \cong E_{1}$

What about the Lehmer map f_{10} ? At this point we know only f_{10}^{*}. Theoretical idea:

- $F=\{t=0\} \subseteq X_{10}$ a fiber
- $f^{*} F$ is the fiber of another elliptic fibration E_{2}
- linear system $\left|f^{*} F\right|$ gives new coordinates, i.e. a Weiterstraß equation for $E_{2} \cong E_{1}$
- the composite map $E_{1} \leftarrow E_{2} \cong E_{1}$ is (almost) the K3-Lehmer map f_{10}

What about the Lehmer map f_{10} ? At this point we know only f_{10}^{*}. Theoretical idea:

- $F=\{t=0\} \subseteq X_{10}$ a fiber
- $f^{*} F$ is the fiber of another elliptic fibration E_{2}
- linear system $\left|f^{*} F\right|$ gives new coordinates, i.e. a Weiterstraß equation for $E_{2} \cong E_{1}$
- the composite map $E_{1} \leftarrow E_{2} \cong E_{1}$ is (almost) the K3-Lehmer map f_{10} Practical problem: ill suited coordinates!

What about the Lehmer map f_{10} ? At this point we know only f_{10}^{*}. Theoretical idea:

- $F=\{t=0\} \subseteq X_{10}$ a fiber
- $f^{*} F$ is the fiber of another elliptic fibration E_{2}
- linear system $\left|f^{*} F\right|$ gives new coordinates, i.e. a Weiterstraß equation for $E_{2} \cong E_{1}$
- the composite map $E_{1} \leftarrow E_{2} \cong E_{1}$ is (almost) the K3-Lehmer map f_{10} Practical problem: ill suited coordinates! $\rightarrow f_{10}$ very complicated.

What about the Lehmer map f_{10} ? At this point we know only f_{10}^{*}. Theoretical idea:

- $F=\{t=0\} \subseteq X_{10}$ a fiber
- $f^{*} F$ is the fiber of another elliptic fibration E_{2}
- linear system $\left|f^{*} F\right|$ gives new coordinates, i.e. a Weiterstraß equation for $E_{2} \cong E_{1}$
- the composite map $E_{1} \leftarrow E_{2} \cong E_{1}$ is (almost) the K3-Lehmer map f_{10} Practical problem: ill suited coordinates! $\rightarrow f_{10}$ very complicated. We need a different elliptic fibration!

What about the Lehmer map f_{10} ? At this point we know only f_{10}^{*}. Theoretical idea:

- $F=\{t=0\} \subseteq X_{10}$ a fiber
- $f^{*} F$ is the fiber of another elliptic fibration E_{2}
- linear system $\left|f^{*} F\right|$ gives new coordinates, i.e. a Weiterstraß equation for $E_{2} \cong E_{1}$
- the composite map $E_{1} \leftarrow E_{2} \cong E_{1}$ is (almost) the K3-Lehmer map f_{10} Practical problem: ill suited coordinates! $\rightarrow f_{10}$ very complicated. We need a different elliptic fibration!

Solution

Let F^{\prime} be the fiber of another fibration with $F^{\prime} . F=2$. Then $F^{\prime \perp} / F^{\prime}$ and F^{\perp} / F are neighboring lattices in the sense of Kneser. \rightarrow Kneser's neighbor method gives elliptic fibrations

