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Equations for the K3-Lehmer map

Discrete holomorphic dynamics

Setting

a compact complex surface X

f : X → X a biholomorphic map

p ∈ X , “time evolution”: (p, f (p), f 2(p), f 3(p), . . . )

→ Discrete holomorphic dynamics on X .
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Equations for the K3-Lehmer map

A real (K3) surface of bidegree (2, 2, 2) in P1 × P1 × P1

Left: some orbits Right: a stable manifold 1

1Cantat, Dynamics of automorphisms of compact complex surfaces, Frontiers in
Complex Dynamics, Princeton University Press, pp. 463-514.
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Equations for the K3-Lehmer map

An invariant

The Topological Entropy h(f )

h(f ) ≥ 0 measures the disorder created by the automorphism

Gromov, Yomdim: h(f ) = log λ(f )

dynamical degree λ(f ),the spectral radius of f ∗|H2(X ,Z)

⇒ λ(f ) a Salem number (an algebraic integer)
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Equations for the K3-Lehmer map

Lehmer’s number

is the root λ10 = 1.176280818 . . . of
x10 + x9 − x−7 − x6 − x5 − x4 − x3 + x + 1.

Conjecture

Lehmer’s number is the smallest algebraic integer α
with Mahler measure M(α) > 1.

M(α) :=
∏n

i=1 max{1, |αi |} where α1, . . . , αn ∈ C are the roots of the
minimal polynomial of α.

Lehmer’s conjecture is true for automorphisms of complex surfaces

(McMullen): h(f ) = 0 or log λ10 ≤ h(f )
→ spectral gap

If equality holds, then X must be rational or a K3 surface.
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Equations for the K3-Lehmer map

Theorem (McMullen)

There exists an automorphism f10 of a complex projective K3 surface X10

attaining the minimum possible entropy h(f10) = log(λ10).

Proof.

Build a cohomological model for X and f consisting of

1 H2(X ,Z) =̂ a Z-lattice (Z22, 〈·, ·〉),

2 f ∗ : H2(X ,Z)→ H2(X ,Z) =̂ an isometry,

3 a Hodge structure =̂ a line in C22,

4 the nef cone =̂ locally polyhedral convex cone in R20,

Torelli type theorem =⇒ existence of X and f .

But: not constructive. Equations?
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Equations for the K3-Lehmer map

Theorem (Brandhorst, Elkies)

Explicit equations for X10 and the K3-Lehmer map f10 defined over a
degree 2 extension of Q[ζ7].

A sketch of the computation
1 X10 lies in a one dimensional family F of elliptic K3 surfaces with an

automorphism of order 7

y2 = x3 + ax + t7 + 1, (a ∈ C)

2 reduce modulo 29(why 29? Fp contains the (p − 1)-th roots of unity
and 28 = 4 · 7)

3 recognize X10/F29 in F/F29 by requiring extra curves on it:

X10/F29 : y2 = x3 + 19x + 19t7 + 15

x(t) = t4 + 7t3 + 7t2 + 27t + 16

y(t) = t6 + 25t5 + 18t4 + 25t3 + 15t2 + 20t + 23

Simon Brandhorst, joint work with Noam D. Elkies Equations for the K3-Lehmer map 7 / 9
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Equations for the K3-Lehmer map

Lift to characteristic 0

4 a multivariate Newton iteration lifts everything p-adically to high
precision

5 recognize the coefficients as algebraic integers (short vectors via LLL)

0 = w6 − 2w5 + 2w4 − 3w3 + 2w2 − 2w + 10

We get an equation E1 for X10

E1 : y2 = x3 + ax + bt7 + c where

a = (−86471w5 − 19851w4 − 116626w3 + 67043w2

−125502w + 106947)/48

b = 7(−w5 + w4 + 2w3 − 3w2 + 3w − 1)

c = (141655682w5 − 65661512w4 + 230672148w3

−136877559w2 + 149096157w − 96818792)/864
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Equations for the K3-Lehmer map

What about the Lehmer map f10?

At this point we know only f ∗10.
Theoretical idea:

F = {t = 0} ⊆ X10 a fiber

f ∗F is the fiber of another elliptic fibration E2

linear system |f ∗F | gives new coordinates,
i.e. a Weiterstraß equation for E2

∼= E1

the composite map E1 ← E2
∼= E1 is (almost) the K3-Lehmer map f10

Practical problem: ill suited coordinates!→ f10 very complicated.
We need a different elliptic fibration!

Solution

Let F ′ be the fiber of another fibration with F ′.F = 2. Then F ′⊥/F ′ and
F⊥/F are neighboring lattices in the sense of Kneser. → Kneser’s
neighbor method gives elliptic fibrations
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