Simon Brandhorst, joint work with Noam D. Elkies

September 21, 2020

Discrete holomorphic dynamics

Setting

• a compact complex surface X

Simon Brandhorst, joint work with Noam D. Elkies Equations for the K3-Lehmer map

Discrete holomorphic dynamics

Setting

- a compact complex surface X
- $f: X \to X$ a biholomorphic map

Discrete holomorphic dynamics

Setting

- a compact complex surface X
- $f: X \to X$ a biholomorphic map
- $p \in X$, "time evolution": $(p, f(p), f^2(p), f^3(p), \dots)$

Discrete holomorphic dynamics

Setting

- a compact complex surface X
- $f: X \to X$ a biholomorphic map
- $p \in X$, "time evolution": $(p, f(p), f^2(p), f^3(p), ...)$

 \rightarrow Discrete holomorphic dynamics on X.

Discrete holomorphic dynamics

Setting

- a compact complex surface X
- $f: X \to X$ a biholomorphic map
- $p \in X$, "time evolution": $(p, f(p), f^2(p), f^3(p), ...)$

 \rightarrow Discrete holomorphic dynamics on X.

A real (K3) surface of bidegree (2, 2, 2) in $\mathbb{P}^1 \times \mathbb{P}^1 \times \mathbb{P}^1$

Left: some orbits

Right: a stable manifold ¹

¹Cantat, Dynamics of automorphisms of compact complex surfaces, Frontiers in Complex Dynamics, Princeton University Press, pp. 463-514.

The Topological Entropy h(f)

Simon Brandhorst, joint work with Noam D. Elkies Equations for the K3-Lehmer map

The Topological Entropy h(f)

• $h(f) \ge 0$ measures the disorder created by the automorphism

- $h(f) \ge 0$ measures the disorder created by the automorphism
- Gromov, Yomdim: $h(f) = \log \lambda(f)$

- $h(f) \ge 0$ measures the disorder created by the automorphism
- Gromov, Yomdim: $h(f) = \log \lambda(f)$
- dynamical degree $\lambda(f)$,

- $h(f) \ge 0$ measures the disorder created by the automorphism
- Gromov, Yomdim: $h(f) = \log \lambda(f)$
- dynamical degree $\lambda(f)$, the spectral radius of $f^*|H^2(X,\mathbb{Z})$

- $h(f) \ge 0$ measures the disorder created by the automorphism
- Gromov, Yomdim: $h(f) = \log \lambda(f)$
- dynamical degree $\lambda(f)$, the spectral radius of $f^*|H^2(X,\mathbb{Z})$
- $\Rightarrow \lambda(f)$ a Salem number (an algebraic integer)

is the root $\lambda_{10} = 1.176280818...$ of $x^{10} + x^9 - x^{-7} - x^6 - x^5 - x^4 - x^3 + x + 1.$

is the root $\lambda_{10} = 1.176280818...$ of $x^{10} + x^9 - x^{-7} - x^6 - x^5 - x^4 - x^3 + x + 1.$

Conjecture

Lehmer's number is the smallest algebraic integer α

is the root $\lambda_{10} = 1.176280818...$ of $x^{10} + x^9 - x^{-7} - x^6 - x^5 - x^4 - x^3 + x + 1.$

Conjecture

Lehmer's number is the smallest algebraic integer α with Mahler measure $M(\alpha) > 1$.

is the root $\lambda_{10} = 1.176280818...$ of $x^{10} + x^9 - x^{-7} - x^6 - x^5 - x^4 - x^3 + x + 1.$

Conjecture

Lehmer's number is the smallest algebraic integer α with Mahler measure $M(\alpha) > 1$.

 $M(\alpha) := \prod_{i=1}^{n} \max\{1, |\alpha_i|\}$ where $\alpha_1, \ldots, \alpha_n \in \mathbb{C}$ are the roots of the minimal polynomial of α .

is the root $\lambda_{10} = 1.176280818...$ of $x^{10} + x^9 - x^{-7} - x^6 - x^5 - x^4 - x^3 + x + 1.$

Conjecture

Lehmer's number is the smallest algebraic integer α with Mahler measure $M(\alpha) > 1$.

 $M(\alpha) := \prod_{i=1}^{n} \max\{1, |\alpha_i|\}$ where $\alpha_1, \ldots, \alpha_n \in \mathbb{C}$ are the roots of the minimal polynomial of α .

Lehmer's conjecture is true for automorphisms of complex surfaces

is the root $\lambda_{10} = 1.176280818...$ of $x^{10} + x^9 - x^{-7} - x^6 - x^5 - x^4 - x^3 + x + 1.$

Conjecture

Lehmer's number is the smallest algebraic integer α with Mahler measure $M(\alpha) > 1$.

 $M(\alpha) := \prod_{i=1}^{n} \max\{1, |\alpha_i|\}$ where $\alpha_1, \ldots, \alpha_n \in \mathbb{C}$ are the roots of the minimal polynomial of α .

Lehmer's conjecture is true for automorphisms of complex surfaces

(McMullen): h(f) = 0 or

is the root $\lambda_{10} = 1.176280818...$ of $x^{10} + x^9 - x^{-7} - x^6 - x^5 - x^4 - x^3 + x + 1.$

Conjecture

Lehmer's number is the smallest algebraic integer α with Mahler measure $M(\alpha) > 1$.

 $M(\alpha) := \prod_{i=1}^{n} \max\{1, |\alpha_i|\}$ where $\alpha_1, \ldots, \alpha_n \in \mathbb{C}$ are the roots of the minimal polynomial of α .

Lehmer's conjecture is true for automorphisms of complex surfaces

(McMullen): h(f) = 0 or $\log \lambda_{10} \le h(f)$

is the root $\lambda_{10} = 1.176280818...$ of $x^{10} + x^9 - x^{-7} - x^6 - x^5 - x^4 - x^3 + x + 1.$

Conjecture

Lehmer's number is the smallest algebraic integer α with Mahler measure $M(\alpha) > 1$.

 $M(\alpha) := \prod_{i=1}^{n} \max\{1, |\alpha_i|\}$ where $\alpha_1, \ldots, \alpha_n \in \mathbb{C}$ are the roots of the minimal polynomial of α .

Lehmer's conjecture is true for automorphisms of complex surfaces

(McMullen): h(f) = 0 or $\log \lambda_{10} \le h(f)$ \rightarrow spectral gap

is the root $\lambda_{10} = 1.176280818...$ of $x^{10} + x^9 - x^{-7} - x^6 - x^5 - x^4 - x^3 + x + 1.$

Conjecture

Lehmer's number is the smallest algebraic integer α with Mahler measure $M(\alpha) > 1$.

 $M(\alpha) := \prod_{i=1}^{n} \max\{1, |\alpha_i|\}$ where $\alpha_1, \ldots, \alpha_n \in \mathbb{C}$ are the roots of the minimal polynomial of α .

Lehmer's conjecture is true for automorphisms of complex surfaces

(McMullen): h(f) = 0 or $\log \lambda_{10} \le h(f)$ \rightarrow spectral gap

If equality holds, then X must be rational or a K3 surface.

There exists an automorphism f_{10} of a complex projective K3 surface X_{10}

There exists an automorphism f_{10} of a complex projective K3 surface X_{10} attaining the minimum possible entropy $h(f_{10}) = \log(\lambda_{10})$.

There exists an automorphism f_{10} of a complex projective K3 surface X_{10} attaining the minimum possible entropy $h(f_{10}) = \log(\lambda_{10})$.

Proof.

There exists an automorphism f_{10} of a complex projective K3 surface X_{10} attaining the minimum possible entropy $h(f_{10}) = \log(\lambda_{10})$.

Proof.

•
$$H^2(X,\mathbb{Z}) \stackrel{\circ}{=} a \mathbb{Z}$$
-lattice $(\mathbb{Z}^{22}, \langle \cdot, \cdot \rangle)$,

There exists an automorphism f_{10} of a complex projective K3 surface X_{10} attaining the minimum possible entropy $h(f_{10}) = \log(\lambda_{10})$.

Proof.

•
$$H^2(X,\mathbb{Z}) \stackrel{\circ}{=} a \mathbb{Z}$$
-lattice $(\mathbb{Z}^{22}, \langle \cdot, \cdot \rangle),$

There exists an automorphism f_{10} of a complex projective K3 surface X_{10} attaining the minimum possible entropy $h(f_{10}) = \log(\lambda_{10})$.

Proof.

- $H^2(X,\mathbb{Z}) \stackrel{\circ}{=} a \mathbb{Z}$ -lattice $(\mathbb{Z}^{22}, \langle \cdot, \cdot \rangle)$,
- 2 $f^* \colon H^2(X,\mathbb{Z}) \to H^2(X,\mathbb{Z}) \quad \hat{=} \quad \text{an isometry,}$
- **③** a Hodge structure $\hat{=}$ a line in \mathbb{C}^{22} ,

There exists an automorphism f_{10} of a complex projective K3 surface X_{10} attaining the minimum possible entropy $h(f_{10}) = \log(\lambda_{10})$.

Proof.

- $H^2(X,\mathbb{Z}) \stackrel{\circ}{=} a \mathbb{Z}$ -lattice $(\mathbb{Z}^{22}, \langle \cdot, \cdot \rangle)$,
- 2 $f^* \colon H^2(X,\mathbb{Z}) \to H^2(X,\mathbb{Z}) \quad \hat{=} \quad \text{an isometry,}$
- **③** a Hodge structure $\hat{=}$ a line in \mathbb{C}^{22} ,
- **(**) the nef cone $\hat{=}$ locally polyhedral convex cone in \mathbb{R}^{20} ,

There exists an automorphism f_{10} of a complex projective K3 surface X_{10} attaining the minimum possible entropy $h(f_{10}) = \log(\lambda_{10})$.

Proof.

Build a cohomological model for X and f consisting of

•
$$H^2(X,\mathbb{Z}) \stackrel{\circ}{=} a \mathbb{Z}$$
-lattice $(\mathbb{Z}^{22}, \langle \cdot, \cdot \rangle)$,

2
$$f^* \colon H^2(X,\mathbb{Z}) o H^2(X,\mathbb{Z}) \quad \hat{=} \quad \text{an isometry,}$$

③ a Hodge structure $\hat{=}$ a line in \mathbb{C}^{22} ,

() the nef cone $\hat{=}$ locally polyhedral convex cone in \mathbb{R}^{20} ,

Torelli type theorem \implies

There exists an automorphism f_{10} of a complex projective K3 surface X_{10} attaining the minimum possible entropy $h(f_{10}) = \log(\lambda_{10})$.

Proof.

Build a cohomological model for X and f consisting of

•
$$H^2(X,\mathbb{Z}) \stackrel{\circ}{=} a \mathbb{Z}$$
-lattice $(\mathbb{Z}^{22}, \langle \cdot, \cdot \rangle)$,

2
$$f^* \colon H^2(X,\mathbb{Z}) o H^2(X,\mathbb{Z}) \quad \hat{=} \quad \text{an isometry,}$$

③ a Hodge structure $\hat{=}$ a line in \mathbb{C}^{22} ,

() the nef cone $\hat{=}$ locally polyhedral convex cone in \mathbb{R}^{20} ,

Torelli type theorem \implies existence of X and f.

There exists an automorphism f_{10} of a complex projective K3 surface X_{10} attaining the minimum possible entropy $h(f_{10}) = \log(\lambda_{10})$.

Proof.

Build a cohomological model for X and f consisting of

•
$$H^2(X,\mathbb{Z}) \stackrel{\circ}{=} a \mathbb{Z}$$
-lattice $(\mathbb{Z}^{22}, \langle \cdot, \cdot \rangle)$,

2
$$f^* \colon H^2(X,\mathbb{Z}) o H^2(X,\mathbb{Z}) \quad \hat{=} \quad \text{an isometry,}$$

③ a Hodge structure $\hat{=}$ a line in \mathbb{C}^{22} ,

() the nef cone $\hat{=}$ locally polyhedral convex cone in \mathbb{R}^{20} ,

Torelli type theorem \implies existence of X and f.

But:

There exists an automorphism f_{10} of a complex projective K3 surface X_{10} attaining the minimum possible entropy $h(f_{10}) = \log(\lambda_{10})$.

Proof.

Build a cohomological model for X and f consisting of

•
$$H^2(X,\mathbb{Z}) \stackrel{\circ}{=} a \mathbb{Z}$$
-lattice $(\mathbb{Z}^{22}, \langle \cdot, \cdot \rangle)$,

2
$$f^* \colon H^2(X,\mathbb{Z}) \to H^2(X,\mathbb{Z}) \quad \hat{=} \quad \text{an isometry,}$$

③ a Hodge structure $\hat{=}$ a line in \mathbb{C}^{22} ,

() the nef cone $\hat{=}$ locally polyhedral convex cone in \mathbb{R}^{20} ,

Torelli type theorem \implies existence of X and f.

But: not constructive.

There exists an automorphism f_{10} of a complex projective K3 surface X_{10} attaining the minimum possible entropy $h(f_{10}) = \log(\lambda_{10})$.

Proof.

Build a cohomological model for X and f consisting of

•
$$H^2(X,\mathbb{Z}) \stackrel{\circ}{=} a \mathbb{Z}$$
-lattice $(\mathbb{Z}^{22}, \langle \cdot, \cdot \rangle)$,

2
$$f^* \colon H^2(X,\mathbb{Z}) o H^2(X,\mathbb{Z}) \quad \hat{=} \quad \text{an isometry,}$$

③ a Hodge structure $\hat{=}$ a line in \mathbb{C}^{22} ,

() the nef cone $\hat{=}$ locally polyhedral convex cone in \mathbb{R}^{20} ,

Torelli type theorem \implies existence of X and f.

But: not constructive. Equations?

Theorem (Brandhorst, Elkies)

Theorem (Brandhorst, Elkies)

Explicit equations for X_{10} and the K3-Lehmer map f_{10}

Explicit equations for X_{10} and the K3-Lehmer map f_{10} defined over a degree 2 extension of $\mathbb{Q}[\zeta_7]$.

Explicit equations for X_{10} and the K3-Lehmer map f_{10} defined over a degree 2 extension of $\mathbb{Q}[\zeta_7]$.

A sketch of the computation

Explicit equations for X_{10} and the K3-Lehmer map f_{10} defined over a degree 2 extension of $\mathbb{Q}[\zeta_7]$.

A sketch of the computation

Explicit equations for X_{10} and the K3-Lehmer map f_{10} defined over a degree 2 extension of $\mathbb{Q}[\zeta_7]$.

A sketch of the computation

$$y^2=x^3+ax+t^7+1, \quad (a\in\mathbb{C})$$

Explicit equations for X_{10} and the K3-Lehmer map f_{10} defined over a degree 2 extension of $\mathbb{Q}[\zeta_7]$.

A sketch of the computation

• X_{10} lies in a one dimensional family \mathcal{F} of elliptic K3 surfaces with an automorphism of order 7

$$y^2 = x^3 + ax + t^7 + 1, \quad (a \in \mathbb{C})$$

I reduce modulo 29

Explicit equations for X_{10} and the K3-Lehmer map f_{10} defined over a degree 2 extension of $\mathbb{Q}[\zeta_7]$.

A sketch of the computation

• X_{10} lies in a one dimensional family \mathcal{F} of elliptic K3 surfaces with an automorphism of order 7

$$y^2 = x^3 + ax + t^7 + 1, \quad (a \in \mathbb{C})$$

reduce modulo 29(why 29?)

Explicit equations for X_{10} and the K3-Lehmer map f_{10} defined over a degree 2 extension of $\mathbb{Q}[\zeta_7]$.

A sketch of the computation

• X_{10} lies in a one dimensional family \mathcal{F} of elliptic K3 surfaces with an automorphism of order 7

$$y^2 = x^3 + ax + t^7 + 1, \quad (a \in \mathbb{C})$$

I reduce modulo 29(why 29? 𝔽_p contains the (p − 1)-th roots of unity and 28 = 4 · 7)

Explicit equations for X_{10} and the K3-Lehmer map f_{10} defined over a degree 2 extension of $\mathbb{Q}[\zeta_7]$.

A sketch of the computation

$$y^2 = x^3 + ax + t^7 + 1, \quad (a \in \mathbb{C})$$

- Preduce modulo 29(why 29? 𝔽_p contains the (p − 1)-th roots of unity and 28 = 4 · 7)
- **③** recognize X_{10}/\mathbb{F}_{29} in $\mathcal{F}/\mathbb{F}_{29}$ by requiring extra curves on it:

Explicit equations for X_{10} and the K3-Lehmer map f_{10} defined over a degree 2 extension of $\mathbb{Q}[\zeta_7]$.

A sketch of the computation

$$y^2 = x^3 + ax + t^7 + 1, \quad (a \in \mathbb{C})$$

- 2 reduce modulo 29(why 29? 𝔽_p contains the (p − 1)-th roots of unity and 28 = 4 · 7)
- **③** recognize X_{10}/\mathbb{F}_{29} in $\mathcal{F}/\mathbb{F}_{29}$ by requiring extra curves on it:

$$X_{10}/\mathbb{F}_{29}$$
: $y^2 = x^3 + 19x + 19t^7 + 15$

Explicit equations for X_{10} and the K3-Lehmer map f_{10} defined over a degree 2 extension of $\mathbb{Q}[\zeta_7]$.

A sketch of the computation

$$y^2 = x^3 + ax + t^7 + 1, \quad (a \in \mathbb{C})$$

- I reduce modulo 29(why 29? 𝔽_p contains the (p − 1)-th roots of unity and 28 = 4 · 7)
- **③** recognize X_{10}/\mathbb{F}_{29} in $\mathcal{F}/\mathbb{F}_{29}$ by requiring extra curves on it:

$$\begin{array}{rcl} X_{10}/\mathbb{F}_{29} \colon y^2 &=& x^3 + 19x + 19t^7 + 15 \\ x(t) &=& t^4 + 7t^3 + 7t^2 + 27t + 16 \\ y(t) &=& t^6 + 25t^5 + 18t^4 + 25t^3 + 15t^2 + 20t + 23 \end{array}$$

a multivariate Newton iteration lifts everything *p*-adically to high precision

a multivariate Newton iteration lifts everything *p*-adically to high precision

- a multivariate Newton iteration lifts everything *p*-adically to high precision
- recognize the coefficients as algebraic integers (short vectors via LLL)

- a multivariate Newton iteration lifts everything *p*-adically to high precision
- recognize the coefficients as algebraic integers (short vectors via LLL)

$$0 = w^6 - 2w^5 + 2w^4 - 3w^3 + 2w^2 - 2w + 10$$

- a multivariate Newton iteration lifts everything *p*-adically to high precision
- recognize the coefficients as algebraic integers (short vectors via LLL) $0 = w^6 - 2w^5 + 2w^4 - 3w^3 + 2w^2 - 2w + 10$

We get an equation E_1 for X_{10}

$$E_1$$
: $y^2 = x^3 + ax + bt^7 + c$ where

- a multivariate Newton iteration lifts everything *p*-adically to high precision
- recognize the coefficients as algebraic integers (short vectors via LLL) $0 = w^6 - 2w^5 + 2w^4 - 3w^3 + 2w^2 - 2w + 10$

We get an equation E_1 for X_{10}

$$E_1$$
: $y^2 = x^3 + ax + bt^7 + c$ where

$$a = (-86471w^{5} - 19851w^{4} - 116626w^{3} + 67043w^{2} - 125502w + 106947)/48$$

$$b = 7(-w^{5} + w^{4} + 2w^{3} - 3w^{2} + 3w - 1)$$

$$c = (141655682w^{5} - 65661512w^{4} + 230672148w^{3} - 136877559w^{2} + 149096157w - 96818792)/864$$

- a multivariate Newton iteration lifts everything *p*-adically to high precision
- recognize the coefficients as algebraic integers (short vectors via LLL) $0 = w^6 - 2w^5 + 2w^4 - 3w^3 + 2w^2 - 2w + 10$

We get an equation E_1 for X_{10}

$$E_1$$
: $y^2 = x^3 + ax + bt^7 + c$ where

$$a = (-86471w^{5} - 19851w^{4} - 116626w^{3} + 67043w^{2} - 125502w + 106947)/48$$

$$b = 7(-w^{5} + w^{4} + 2w^{3} - 3w^{2} + 3w - 1)$$

$$c = (141655682w^{5} - 65661512w^{4} + 230672148w^{3} - 136877559w^{2} + 149096157w - 96818792)/864$$

What about the Lehmer map f_{10} ?

What about the Lehmer map f_{10} ? At this point we know only f_{10}^* .

• $F = \{t = 0\} \subseteq X_{10}$ a fiber

- $F = \{t = 0\} \subseteq X_{10}$ a fiber
- f^*F is the fiber of another elliptic fibration E_2

- $F = \{t = 0\} \subseteq X_{10}$ a fiber
- f^*F is the fiber of another elliptic fibration E_2
- linear system $|f^*F|$ gives new coordinates,
 - i.e. a Weiterstraß equation for $E_2 \cong E_1$

- $F = \{t = 0\} \subseteq X_{10}$ a fiber
- f^*F is the fiber of another elliptic fibration E_2
- linear system $|f^*F|$ gives new coordinates,
 - i.e. a Weiterstraß equation for $E_2 \cong E_1$
- the composite map $E_1 \leftarrow E_2 \cong E_1$ is (almost) the K3-Lehmer map f_{10}

- $F = \{t = 0\} \subseteq X_{10}$ a fiber
- f^*F is the fiber of another elliptic fibration E_2
- linear system $|f^*F|$ gives new coordinates,
 - i.e. a Weiterstraß equation for $E_2 \cong E_1$
- the composite map $E_1 \leftarrow E_2 \cong E_1$ is (almost) the K3-Lehmer map f_{10}

Practical problem: ill suited coordinates!

•
$$F = \{t = 0\} \subseteq X_{10}$$
 a fiber

- f^*F is the fiber of another elliptic fibration E_2
- linear system $|f^*F|$ gives new coordinates,
 - i.e. a Weiterstraß equation for $E_2 \cong E_1$
- the composite map $E_1 \leftarrow E_2 \cong E_1$ is (almost) the K3-Lehmer map f_{10}

Practical problem: ill suited coordinates! \rightarrow *f*₁₀ very complicated.

•
$$F = \{t = 0\} \subseteq X_{10}$$
 a fiber

- f^*F is the fiber of another elliptic fibration E_2
- linear system $|f^*F|$ gives new coordinates,
 - i.e. a Weiterstraß equation for $E_2 \cong E_1$
- the composite map $E_1 \leftarrow E_2 \cong E_1$ is (almost) the K3-Lehmer map f_{10}

Practical problem: ill suited coordinates! $\rightarrow f_{10}$ very complicated. We need a different elliptic fibration!

•
$$F = \{t = 0\} \subseteq X_{10}$$
 a fiber

- f^*F is the fiber of another elliptic fibration E_2
- linear system $|f^*F|$ gives new coordinates,
 - i.e. a Weiterstraß equation for $E_2 \cong E_1$
- the composite map $E_1 \leftarrow E_2 \cong E_1$ is (almost) the K3-Lehmer map f_{10}

Practical problem: ill suited coordinates! $\rightarrow f_{10}$ very complicated. We need a different elliptic fibration!

Solution

Let F' be the fiber of another fibration with F'.F = 2. Then F'^{\perp}/F' and F^{\perp}/F are neighboring lattices in the sense of Kneser. \rightarrow Kneser's neighbor method gives elliptic fibrations