TALK: COUNTING RATIONAL POINTS ON TORIC VARIETIES

 VIA COX RINGS.MARTA PIEROPAN

Let k be a number field, \mathcal{O}_{k} its ring of integers and $C l_{k}$ its ideal class group.
Let X be a smooth, complete, split toric variety over k, equivariant compactification of a torus U
defined by a fan Σ with rays $\rho_{1}, \ldots, \rho_{N}$.
For all $i=1, \ldots, N$, let $D_{\rho_{i}}$ be the torus invariant divisor associated to ρ_{i}. Then $-K_{X}:=\sum_{i=1}^{N} D_{\rho_{i}}$ is an anticanonical divisor of X.

Assume that $\mathcal{O}_{X}\left(-K_{X}\right)$ is generated by global sections, let $\varphi: X \rightarrow \mathbb{P}_{k}^{m}$ be the induced morphism.

Let

$$
H_{\mathbb{P}_{k}^{m}}: \mathbb{P}_{k}^{m}(k) \rightarrow \mathbb{R}_{\geq 0}, \quad\left(y_{0}: \cdots: y_{m}\right) \mapsto \prod_{\nu \in \Omega_{k}} \sup _{i=0, \ldots, m}\left|y_{i}\right|_{\nu}
$$

where Ω_{k} is the set of places of k and $|\cdot|_{\nu}$ the norm associated to the place ν.
If $k=\mathbb{Q}$, then $H_{\mathbb{P}_{k}^{m}}\left(y_{0}: \cdots: y_{m}\right)=\max _{i=0, \ldots, m}\left|y_{i}\right|$ whenever $y_{0}, \ldots, y_{m} \in$ \mathbb{Z} and $\operatorname{gcd}\left(y_{0}, \ldots, y_{m}\right)=1$. We note that we can always find such a representative for a \mathbb{Q}-rational point of \mathbb{P}_{k}^{m}. In this case the norm $|$.$| involved is$ the absolute value on \mathbb{R}.
We define $H: X(k) \rightarrow \mathbb{R}_{\geq 0}$ by $H=H_{\mathbb{P}_{k}^{m}} \circ \varphi$.
Manin's conjecture predicts that

$$
N(B):=\#\{x \in U(k): H(x) \leq B\} \sim C_{k, X} B(\log B)^{r k \operatorname{Pic}(X)-1}, \quad B \rightarrow \infty
$$

How to approach the proof.
$\operatorname{Cox}(X) \cong k\left[x_{1}, \ldots, x_{N}\right], \operatorname{graded} \operatorname{by} \operatorname{Pic}(X): \operatorname{deg}\left(x_{i}\right)=\left[D_{\rho_{i}}\right] \operatorname{in} \operatorname{Pic}(X)$.
Let $\Sigma_{\max }$ be the set of maximal cones of Σ.
For all $\sigma \in \Sigma_{\text {max }}$ we set $\underline{x}^{\sigma}=\prod_{1 \leq i \leq N, \rho_{i} \notin \sigma} x_{i}$.
Then

$$
\mathcal{T}:=\operatorname{Spec}(\operatorname{Cox}(X)) \backslash V\left(\left\{x^{\sigma}: \sigma \in \Sigma_{\max }\right\}\right)
$$

is a universal torsor of X. In particular it is a torsor of X under $T_{N S}=$ $\operatorname{Pic}(X)^{*} \cong \mathbb{G}_{m}^{r}$, where $r=r k \operatorname{Pic}(X)$.

over k there is only one universal torsor
over \mathcal{O}_{k} there are $H^{1}\left(\operatorname{Spec}\left(\mathcal{O}_{k}\right), \mathbb{G}_{m}^{r}\right) \cong C l_{k}^{r}$ universal torsors.

We have that

$$
X(k)=X\left(\mathcal{O}_{k}\right)=\bigsqcup_{[a] \in C l_{k}^{r}} \pi\left(\underline{\mathfrak{a}} \widetilde{\mathcal{T}}\left(\mathcal{O}_{k}\right)\right)
$$

where the first equality holds because X is proper and ${ }_{\mathfrak{a}} \widetilde{\mathcal{T}}$ is a twist of $\widetilde{\mathcal{T}}$ with class $[a]$ in $C l_{k}^{r}$.

For all $x \in{ }_{\underline{\mathfrak{a}}} \widetilde{\mathcal{T}}\left(\mathcal{O}_{k}\right)$ we have $H(\pi(x))=\frac{1}{N\left(a^{\left.-K_{X}\right)}\right.} \prod_{\nu \in \Omega_{\infty}} \sup _{\sigma \in \Sigma_{\max }}\left|\underline{x}^{-K_{X}(\sigma)}\right|_{\nu}$, where Ω_{∞} is the set of the infinite places of k and $\underline{x}^{-K_{X}(\sigma)}$ are suitable monomials of degree $\left[-K_{X}\right]$ in $\operatorname{Cox}(X)$.

Let $V=\pi^{-1}(U)$, then
$N(B)=\sum_{[a] \in C l_{k}^{r}} \#\left(\left\{x \in V(k) \cap_{\underline{\mathfrak{a}}} \widetilde{\mathcal{T}}\left(\mathcal{O}_{k}\right): H(\pi(x)) \leq B\right\} / \widetilde{T_{N S}}\left(\mathcal{O}_{k}\right)\right)$.
$\widetilde{T_{N S}}\left(\mathcal{O}_{k}\right) \cong\left(\mathcal{O}_{k}^{\times}\right)^{r} \cong \mu_{k}^{r} \times U_{k}^{r}$, where μ_{k} is a finite group and U_{k} is torsion free.

Let Δ be a fundamental domain for the action of U_{k}^{r} on $V(k)$, then

$$
N(B)=\frac{1}{\left(\# \mu_{k}\right)^{r}} \sum_{[a] \in C l_{k}^{r}} \#\left\{x \in \Delta(k) \cap_{\underline{\mathfrak{a}}} \widetilde{\mathcal{T}}\left(\mathcal{O}_{k}\right): H(\pi(x)) \leq B\right\} .
$$

Now we can proceed with a Möbius inversion and lattice point counting if the set $\{x \in \Delta(k): H(x) \leq B\}$ is bounded after embedding k into the product of its completions at the infinite places.

References

[1] Batyrev, V.V.; Tschinkel, Y. Manin's conjecture for toric varieties. J. Algebraic Geom. 7 (1998), no. 1, 15-53

2] Salberger, P. Tamagawa measures on universal torsors and points of bounded height on Fano varieties. Nombre et repartition de points de hauteur bornée (Paris,1996). Astérisque No. 251 (1998), 91-258.
[3] Schanuel, S.H. Heights in number fields. Bull. Soc. Math. France 107 (1979), no. 4, 433-449.
Mathematisches Institut, Ludwig-Maximilians-Universität München, Theresienstr.
39, 80333 München, Germany
E-mail address: marta.pieropan@mathematik.uni-muenchen.de

