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Conjecture (Chevalley, 1957)
If X is a complete normal algebraic variety such that each finite
subset of X is contained in some open affine subset of X then
X is projective.
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a(X ) := sup{n | each set of n points on X is contained

in some open affine subset of X}.

ρ(X ) := dim ((CaDiv(X )/CaDivτ (X ))⊗Z R)

Theorem (Kleiman, 1966)
If X is a complete Q-factorial algebraic variety and
a(X ) > 2ρ(X ) then X is projective.
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Problem
For every positive integer k construct a complete normal
algebraic variety with ρ(X ) = 0 and a(X ) = k.
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A cone is the subset R>0x1 + . . .+ R>0xk of Rn, where
x1, . . . , xn ∈ Zn.
The dual cone of a cone σ is the set
σ∨ = {y ∈ Rn | 〈x , y〉 > 0 for every x ∈ σ}.
We use the semigroup Sσ = σ∨ ∩ Zn to obtain an algebra C[Sσ]
and a variety Xσ = Spec(C[Sσ]).
A fan ∆ in Rn is a finite set of cones in Rn such that:

1 each face of a cone from ∆ is also in ∆,
2 the intersection of two cones from ∆ is a face of each of

them.

Michał Farnik Quasiprojectivity of toric varieties...



Motivation
Toric varieties

The end

A cone is the subset R>0x1 + . . .+ R>0xk of Rn, where
x1, . . . , xn ∈ Zn.
The dual cone of a cone σ is the set
σ∨ = {y ∈ Rn | 〈x , y〉 > 0 for every x ∈ σ}.
We use the semigroup Sσ = σ∨ ∩ Zn to obtain an algebra C[Sσ]
and a variety Xσ = Spec(C[Sσ]).
A fan ∆ in Rn is a finite set of cones in Rn such that:

1 each face of a cone from ∆ is also in ∆,
2 the intersection of two cones from ∆ is a face of each of

them.

Michał Farnik Quasiprojectivity of toric varieties...



Motivation
Toric varieties

The end

A cone is the subset R>0x1 + . . .+ R>0xk of Rn, where
x1, . . . , xn ∈ Zn.
The dual cone of a cone σ is the set
σ∨ = {y ∈ Rn | 〈x , y〉 > 0 for every x ∈ σ}.
We use the semigroup Sσ = σ∨ ∩ Zn to obtain an algebra C[Sσ]
and a variety Xσ = Spec(C[Sσ]).
A fan ∆ in Rn is a finite set of cones in Rn such that:

1 each face of a cone from ∆ is also in ∆,
2 the intersection of two cones from ∆ is a face of each of

them.

Michał Farnik Quasiprojectivity of toric varieties...



Motivation
Toric varieties

The end

A cone is the subset R>0x1 + . . .+ R>0xk of Rn, where
x1, . . . , xn ∈ Zn.
The dual cone of a cone σ is the set
σ∨ = {y ∈ Rn | 〈x , y〉 > 0 for every x ∈ σ}.
We use the semigroup Sσ = σ∨ ∩ Zn to obtain an algebra C[Sσ]
and a variety Xσ = Spec(C[Sσ]).
A fan ∆ in Rn is a finite set of cones in Rn such that:

1 each face of a cone from ∆ is also in ∆,
2 the intersection of two cones from ∆ is a face of each of

them.

Michał Farnik Quasiprojectivity of toric varieties...



Motivation
Toric varieties

The end

If τ is a face of σ then σ∨ is a face of τ∨, C[Sσ] is a subalgebra
of C[Sτ ] and Xτ is an open subvariety of Xσ.
We construct the toric variety X∆ by glueing together affine
toric varieties Xσ for all σ ∈ ∆.
X{0} = (C∗)n is an open subset of every Xσ.
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The map y 7→ div (χ−y ) gives a surjection from Zn onto
CaDiv0

T (X∆) with kernel Zn ∩ |∆|⊥.
D ∈ CaDivT (X∆) determines on each cone σ ∈ ∆ an element
yD(σ) ∈ Zn such that D|Xσ = div

(
χ−yD(σ)

)
|Xσ . It is determined

uniquely up to addition of elements of σ⊥.
Moreover if τ is a common face of σ1, σ2 ∈ ∆ then
yD(σ1)− yD(σ2) ∈ τ⊥.
Pic(X∆) = CaDivT (X∆)/CaDiv0

T (X∆)
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We associate with a divisor D ∈ CaDivT (X∆) a piecewise linear
function ΨD on the support |∆| defined as ΨD(x) = 〈x , yD(σ)〉
for x ∈ σ.
D is a principal divisor iff ΨD is a linear function.
∆(1) – set of 1-dimensional cones in ∆

A divisor D ∈ CaDivT (X∆) is uniquely determined by yD(τ) for
every τ ∈ ∆(1).
A piecewise linear function Ψ on ∆ is uniquely determined by
the values Ψ(xτ ) for every τ ∈ ∆(1) and any xτ ∈ τ \ {0}.
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We call the function ΨD strictly convex if for every maximal
cone σ ∈ ∆ there is a linear function LD(σ) such that
LD(σ)(x) = ΨD(x) for x ∈ σ and LD(σ)(x) > ΨD(x) for
x ∈ |∆| \ σ.

Theorem
D ∈ CaDivT (X∆) is an ample divisor iff ΨD is strictly convex.
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Lemma
For a toric variety X∆ we have: a(X ) > n iff for every σ1, . . ., σn
in ∆ there exists a strictly convex piecewise linear function on⋃n

i=1 σi .

Theorem
For every t > 5 there is a complete normal toric variety X with
a(X ) = t and ρ(X ) = 0.
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Let T be the convex polyhedron whose vertices are the points
from the set P = {P1, . . . ,P4n,Q1, . . . ,Q4n,Q0}, where for
k = 1, . . . , n

2 we have:
Pk = (nk + k2,n2 − k2,−n2),
P n

2 +k = (n2 − ( n
2 − k)2,n( n

2 − k) + ( n
2 − k)2,−n2),

Pn+k = (n2 − k2,−nk − k2,−n2),
P 3n

2 +k = (n( n
2 − k) + ( n

2 − k)2,−n2 + ( n
2 − k)2,−n2),

P2n+k = (−nk − k2,−n2 + k2,−n2),
P 5n

2 +k = (−n2 + ( n
2 − k)2,−n( n

2 − k)− ( n
2 − k)2,−n2),

P3n+k = (−n2 + k2,nk + k2,−n2),
P 7n

2 +k = (−n( n
2 − k)− ( n

2 − k)2,n2 − ( n
2 − k)2,−n2). Moreover:

Qk = Pk + (0,0,2n2) dla k = 1, . . . ,2n − 1,2n + 1, . . . ,4n − 1,
Q2n = (0,−n2,n2 − n2

n2−1 ), Q4n = (0,n2,n2 − n2

n2−1 ),
Q0 = (0,0,2n2).
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Polyhedron T for n = 2.
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Let ∆′ be the set of cones spanned over R>0 by the faces,
edges and vertices of T and (0,0,0). We obtain a variety X∆′ .
We modify the fan ∆′ by shifting the point P4n to
(0,n2,−n2 − ε). We obtain the fan ∆. The variety X∆ satisfies
a(X∆) = 2n + 2 and ρ(X∆) = 0.
A simple modification gives the theorem for every t > 5.
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