Motivation Toric varieties The end

Quasiprojectivity of toric varieties via convex continuous piecewiese linear functions

Michał Farnik Jagiellonian University

Hamburg, 5th September 2013

Michał Farnik Quasiprojectivity of toric varieties...

Motivation Toric varieties The end

Conjecture (Chevalley, 1957)

If X is a complete normal algebraic variety such that each finite subset of X is contained in some open affine subset of X then X is projective.

・ロット (母) ・ ヨ) ・ ・ ヨ)

크

$a(X) := \sup\{n \mid \text{each set of } n \text{ points on } X \text{ is contained}$ in some open affine subset of $X\}.$

$\rho(X) := \dim\left((\operatorname{CaDiv}(X)/\operatorname{CaDiv}^{\tau}(X)) \otimes_{\mathbb{Z}} \mathbb{R}\right)$

Theorem (Kleiman, 1966)

If X is a complete \mathbb{Q} -factorial algebraic variety and $a(X) \ge 2\rho(X)$ then X is projective.

(日)

$a(X) := \sup\{n \mid \text{each set of } n \text{ points on } X \text{ is contained}$ in some open affine subset of $X\}.$

 $\rho(X) := \dim\left(\left(\operatorname{CaDiv}(X) / \operatorname{CaDiv}^{\tau}(X)\right) \otimes_{\mathbb{Z}} \mathbb{R}\right)$

Theorem (Kleiman, 1966)

If X is a complete \mathbb{Q} -factorial algebraic variety and $a(X) \ge 2\rho(X)$ then X is projective.

 $a(X) := \sup\{n \mid \text{each set of } n \text{ points on } X \text{ is contained}$ in some open affine subset of $X\}.$

 $ho(X) := \dim\left(\left(\operatorname{CaDiv}(X) / \operatorname{CaDiv}^{ au}(X)\right) \otimes_{\mathbb{Z}} \mathbb{R}\right)$

Theorem (Kleiman, 1966)

If X is a complete \mathbb{Q} -factorial algebraic variety and $a(X) \ge 2\rho(X)$ then X is projective.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Motivation Toric varieties The end

Problem

For every positive integer k construct a complete normal algebraic variety with $\rho(X) = 0$ and a(X) = k.

Michał Farnik Quasiprojectivity of toric varieties...

The dual cone of a cone σ is the set

 $\sigma^{\vee} = \{ y \in \mathbb{R}^n \mid \langle x, y \rangle \ge 0 \text{ for every } x \in \sigma \}.$

We use the semigroup $S_{\sigma} = \sigma^{\vee} \cap \mathbb{Z}^n$ to obtain an algebra $\mathbb{C}[S_{\sigma}]$ and a variety $X_{\sigma} = \text{Spec}(\mathbb{C}[S_{\sigma}])$.

A fan Δ in \mathbb{R}^n is a finite set of cones in \mathbb{R}^n such that:

- each face of a cone from Δ is also in Δ ,
- 2 the intersection of two cones from △ is a face of each of them.

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ト

The dual cone of a cone σ is the set $\sigma^{\vee} = \{ y \in \mathbb{R}^n \mid \langle x, y \rangle \ge 0 \text{ for every } x \in \sigma \}.$

We use the semigroup $S_{\sigma} = \sigma^{\vee} \cap \mathbb{Z}^n$ to obtain an algebra $\mathbb{C}[S_{\sigma}]$ and a variety $X_{\sigma} = \text{Spec}(\mathbb{C}[S_{\sigma}])$.

A fan Δ in \mathbb{R}^n is a finite set of cones in \mathbb{R}^n such that:

- (1) each face of a cone from Δ is also in Δ ,
- 2 the intersection of two cones from △ is a face of each of them.

The dual cone of a cone σ is the set

 $\sigma^{\vee} = \{ \mathbf{y} \in \mathbb{R}^n \mid \langle \mathbf{x}, \mathbf{y} \rangle \ge \mathbf{0} \text{ for every } \mathbf{x} \in \sigma \}.$

We use the semigroup $S_{\sigma} = \sigma^{\vee} \cap \mathbb{Z}^n$ to obtain an algebra $\mathbb{C}[S_{\sigma}]$ and a variety $X_{\sigma} = \text{Spec}(\mathbb{C}[S_{\sigma}])$.

A fan Δ in \mathbb{R}^n is a finite set of cones in \mathbb{R}^n such that:

(1) each face of a cone from Δ is also in Δ ,

2 the intersection of two cones from △ is a face of each of them.

The dual cone of a cone σ is the set

 $\sigma^{\vee} = \{ \mathbf{y} \in \mathbb{R}^n \mid \langle \mathbf{x}, \mathbf{y} \rangle \ge \mathbf{0} \text{ for every } \mathbf{x} \in \sigma \}.$

We use the semigroup $S_{\sigma} = \sigma^{\vee} \cap \mathbb{Z}^n$ to obtain an algebra $\mathbb{C}[S_{\sigma}]$ and a variety $X_{\sigma} = \text{Spec}(\mathbb{C}[S_{\sigma}])$.

A fan Δ in \mathbb{R}^n is a finite set of cones in \mathbb{R}^n such that:

- each face of a cone from △ is also in △,
- 2 the intersection of two cones from △ is a face of each of them.

If τ is a face of σ then σ^{\vee} is a face of τ^{\vee} , $\mathbb{C}[S_{\sigma}]$ is a subalgebra of $\mathbb{C}[S_{\tau}]$ and X_{τ} is an open subvariety of X_{σ} .

We construct the toric variety X_{Δ} by glueing together affine toric varieties X_{σ} for all $\sigma \in \Delta$.

 $X_{\{0\}} = (\mathbb{C}^*)^n$ is an open subset of every $X_\sigma.$

If τ is a face of σ then σ^{\vee} is a face of τ^{\vee} , $\mathbb{C}[S_{\sigma}]$ is a subalgebra of $\mathbb{C}[S_{\tau}]$ and X_{τ} is an open subvariety of X_{σ} .

We construct the toric variety X_{Δ} by glueing together affine toric varieties X_{σ} for all $\sigma \in \Delta$.

 $X_{\{0\}} = (\mathbb{C}^*)^n$ is an open subset of every X_{σ} .

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□▶

If τ is a face of σ then σ^{\vee} is a face of τ^{\vee} , $\mathbb{C}[S_{\sigma}]$ is a subalgebra of $\mathbb{C}[S_{\tau}]$ and X_{τ} is an open subvariety of X_{σ} .

We construct the toric variety X_{Δ} by glueing together affine toric varieties X_{σ} for all $\sigma \in \Delta$.

 $X_{\{0\}} = (\mathbb{C}^*)^n$ is an open subset of every X_{σ} .

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□▶ ◆□

 $D \in \operatorname{CaDiv}_{T}(X_{\Delta})$ determines on each cone $\sigma \in \Delta$ an element $y_{D}(\sigma) \in \mathbb{Z}^{n}$ such that $D|_{X_{\sigma}} = \operatorname{div} \left(\chi^{-y_{D}(\sigma)}\right)|_{X_{\sigma}}$. It is determined uniquely up to addition of elements of σ^{\perp} .

Moreover if τ is a common face of $\sigma_1, \sigma_2 \in \Delta$ then $y_D(\sigma_1) - y_D(\sigma_2) \in \tau^{\perp}$.

 $\operatorname{Pic}(X_{\Delta}) = \operatorname{CaDiv}_{T}(X_{\Delta}) / \operatorname{CaDiv}_{T}^{0}(X_{\Delta})$

(日)

 $D \in \operatorname{CaDiv}_{T}(X_{\Delta})$ determines on each cone $\sigma \in \Delta$ an element $y_{D}(\sigma) \in \mathbb{Z}^{n}$ such that $D|_{X_{\sigma}} = \operatorname{div} \left(\chi^{-y_{D}(\sigma)}\right)|_{X_{\sigma}}$. It is determined uniquely up to addition of elements of σ^{\perp} .

Moreover if τ is a common face of $\sigma_1, \sigma_2 \in \Delta$ then $y_D(\sigma_1) - y_D(\sigma_2) \in \tau^{\perp}$. $\operatorname{Pic}(X_{\Delta}) = \operatorname{CaDiv}_T(X_{\Delta}) / \operatorname{CaDiv}_T^0(X_{\Delta})$

(日)

 $D \in \operatorname{CaDiv}_{T}(X_{\Delta})$ determines on each cone $\sigma \in \Delta$ an element $y_{D}(\sigma) \in \mathbb{Z}^{n}$ such that $D|_{X_{\sigma}} = \operatorname{div} \left(\chi^{-y_{D}(\sigma)}\right)|_{X_{\sigma}}$. It is determined uniquely up to addition of elements of σ^{\perp} .

Moreover if τ is a common face of $\sigma_1, \sigma_2 \in \Delta$ then $y_D(\sigma_1) - y_D(\sigma_2) \in \tau^{\perp}$.

 $\operatorname{Pic}(X_{\Delta}) = \operatorname{CaDiv}_{T}(X_{\Delta}) / \operatorname{CaDiv}_{T}^{0}(X_{\Delta})$

 $D \in \operatorname{CaDiv}_{T}(X_{\Delta})$ determines on each cone $\sigma \in \Delta$ an element $y_{D}(\sigma) \in \mathbb{Z}^{n}$ such that $D|_{X_{\sigma}} = \operatorname{div} \left(\chi^{-y_{D}(\sigma)}\right)|_{X_{\sigma}}$. It is determined uniquely up to addition of elements of σ^{\perp} .

Moreover if τ is a common face of $\sigma_1, \sigma_2 \in \Delta$ then $y_D(\sigma_1) - y_D(\sigma_2) \in \tau^{\perp}$. $\operatorname{Pic}(X_{\Delta}) = \operatorname{CaDiv}_T(X_{\Delta}) / \operatorname{CaDiv}_T^0(X_{\Delta})$

D is a principal divisor iff Ψ_D is a linear function.

 $\Delta(1)$ – set of 1-dimensional cones in Δ

A divisor $D \in \text{CaDiv}_{\mathcal{T}}(X_{\Delta})$ is uniquely determined by $y_D(\tau)$ for every $\tau \in \Delta(1)$.

A piecewise linear function Ψ on Δ is uniquely determined by the values $\Psi(x_{\tau})$ for every $\tau \in \Delta(1)$ and any $x_{\tau} \in \tau \setminus \{0\}$.

(日)

D is a principal divisor iff Ψ_D is a linear function.

 $\Delta(1)$ – set of 1-dimensional cones in Δ

A divisor $D \in \text{CaDiv}_{\mathcal{T}}(X_{\Delta})$ is uniquely determined by $y_D(\tau)$ for every $\tau \in \Delta(1)$.

A piecewise linear function Ψ on Δ is uniquely determined by the values $\Psi(x_{\tau})$ for every $\tau \in \Delta(1)$ and any $x_{\tau} \in \tau \setminus \{0\}$.

D is a principal divisor iff Ψ_D is a linear function.

 $\Delta(1)$ – set of 1-dimensional cones in Δ

A divisor $D \in \text{CaDiv}_{\mathcal{T}}(X_{\Delta})$ is uniquely determined by $y_D(\tau)$ for every $\tau \in \Delta(1)$.

A piecewise linear function Ψ on Δ is uniquely determined by the values $\Psi(x_{\tau})$ for every $\tau \in \Delta(1)$ and any $x_{\tau} \in \tau \setminus \{0\}$.

D is a principal divisor iff Ψ_D is a linear function.

 $\Delta(1)$ – set of 1-dimensional cones in Δ

A divisor $D \in \text{CaDiv}_{\mathcal{T}}(X_{\Delta})$ is uniquely determined by $y_D(\tau)$ for every $\tau \in \Delta(1)$.

A piecewise linear function Ψ on Δ is uniquely determined by the values $\Psi(x_{\tau})$ for every $\tau \in \Delta(1)$ and any $x_{\tau} \in \tau \setminus \{0\}$.

We call the function Ψ_D strictly convex if for every maximal cone $\sigma \in \Delta$ there is a linear function $L_D(\sigma)$ such that $L_D(\sigma)(x) = \Psi_D(x)$ for $x \in \sigma$ and $L_D(\sigma)(x) > \Psi_D(x)$ for $x \in |\Delta| \setminus \sigma$.

Theorem

 $D \in \text{CaDiv}_T(X_{\Delta})$ is an ample divisor iff Ψ_D is strictly convex.

We call the function Ψ_D strictly convex if for every maximal cone $\sigma \in \Delta$ there is a linear function $L_D(\sigma)$ such that $L_D(\sigma)(x) = \Psi_D(x)$ for $x \in \sigma$ and $L_D(\sigma)(x) > \Psi_D(x)$ for $x \in |\Delta| \setminus \sigma$.

Theorem

 $D \in \text{CaDiv}_T(X_\Delta)$ is an ample divisor iff Ψ_D is strictly convex.

Lemma

For a toric variety X_{Δ} we have: $a(X) \ge n$ iff for every $\sigma_1, \ldots, \sigma_n$ in Δ there exists a strictly convex piecewise linear function on $\bigcup_{i=1}^n \sigma_i$.

Theorem

For every $t \ge 5$ there is a complete normal toric variety X with a(X) = t and $\rho(X) = 0$.

・ロット (母) ・ ヨ) ・ ・ ヨ)

크

Lemma

For a toric variety X_{Δ} we have: $a(X) \ge n$ iff for every $\sigma_1, \ldots, \sigma_n$ in Δ there exists a strictly convex piecewise linear function on $\bigcup_{i=1}^n \sigma_i$.

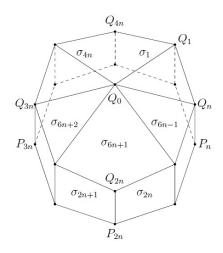
Theorem

For every $t \ge 5$ there is a complete normal toric variety X with a(X) = t and $\rho(X) = 0$.

イロト イポト イヨト イヨト

르

Let T be the convex polyhedron whose vertices are the points from the set $\mathcal{P} = \{P_1, \ldots, P_{4n}, Q_1, \ldots, Q_{4n}, Q_n\}$, where for $k = 1, \ldots, \frac{n}{2}$ we have: $P_{k} = (nk + k^{2}, n^{2} - k^{2}, -n^{2}).$ $P_{\frac{n}{2}+k} = (n^2 - (\frac{n}{2} - k)^2, n(\frac{n}{2} - k) + (\frac{n}{2} - k)^2, -n^2),$ $P_{n+k} = (n^2 - k^2, -nk - k^2, -n^2).$ $P_{\underline{3n}+k} = (n(\frac{n}{2}-k) + (\frac{n}{2}-k)^2, -n^2 + (\frac{n}{2}-k)^2, -n^2),$ $P_{2n+k} = (-nk - k^2, -n^2 + k^2, -n^2).$ $P_{\frac{5n}{2}+k} = (-n^2 + (\frac{n}{2} - k)^2, -n(\frac{n}{2} - k) - (\frac{n}{2} - k)^2, -n^2),$ $P_{3n+k} = (-n^2 + k^2, nk + k^2, -n^2)$ $P_{\frac{7n}{2}+k} = (-n(\frac{n}{2}-k)-(\frac{n}{2}-k)^2, n^2-(\frac{n}{2}-k)^2, -n^2).$ Moreover: $Q_k = P_k + (0, 0, 2n^2)$ dla $k = 1, \dots, 2n - 1, 2n + 1, \dots, 4n - 1,$ $Q_{2n} = (0, -n^2, n^2 - \frac{n^2}{n^2 - 1}), \quad Q_{4n} = (0, n^2, n^2 - \frac{n^2}{n^2 - 1}),$ $Q_0 = (0, 0, 2n^2)$



Polyhedron *T* for n = 2.

◆ロ▶ ◆昼▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Let Δ' be the set of cones spanned over $\mathbb{R}_{\geq 0}$ by the faces, edges and vertices of T and (0,0,0). We obtain a variety $X_{\Delta'}$.

We modify the fan Δ' by shifting the point P_{4n} to $(0, n^2, -n^2 - \varepsilon)$. We obtain the fan Δ . The variety X_{Δ} satisfies $a(X_{\Delta}) = 2n + 2$ and $\rho(X_{\Delta}) = 0$.

A simple modification gives the theorem for every $t \ge 5$.

Let Δ' be the set of cones spanned over $\mathbb{R}_{\geq 0}$ by the faces, edges and vertices of *T* and (0,0,0). We obtain a variety $X_{\Delta'}$. We modify the fan Δ' by shifting the point P_{4n} to $(0, n^2, -n^2 - \varepsilon)$. We obtain the fan Δ . The variety X_{Δ} satisfies $a(X_{\Delta}) = 2n + 2$ and $\rho(X_{\Delta}) = 0$.

A simple modification gives the theorem for every $t \ge 5$.

Let Δ' be the set of cones spanned over $\mathbb{R}_{\geq 0}$ by the faces, edges and vertices of *T* and (0,0,0). We obtain a variety $X_{\Delta'}$. We modify the fan Δ' by shifting the point P_{4n} to $(0, n^2, -n^2 - \varepsilon)$. We obtain the fan Δ . The variety X_{Δ} satisfies $a(X_{\Delta}) = 2n + 2$ and $\rho(X_{\Delta}) = 0$.

A simple modification gives the theorem for every $t \ge 5$.

- D.A. Cox, J.B. Little, H.K. Schenck, *Toric Varieties*, Graduate Studies in Mathematics, Vol. 124, Amer. Math. Soc., Providence, 2011.
- W. Fulton, *Introduction to toric varieties*, Princeton Univ. Press, Princeton, New Jersey 1993.

・ロット (母) ・ ヨ) ・ ・ ヨ)

크

Motivation Toric varieties The end

Bibliography

Thank you for your attention.

Michał Farnik Quasiprojectivity of toric varieties...

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 _ のへで